{ "cells": [ { "cell_type": "code", "id": "fbc121e30a2defb3", "metadata": { "ExecuteTime": { "end_time": "2025-09-16T09:12:04.164634Z", "start_time": "2025-09-16T09:12:03.762223Z" } }, "source": [ "# import matplotlib.pyplot as plt\n", "import csv\n", "import math\n", "import plotly.graph_objects as go\n", "import numpy as np\n", "from jupyter_client.connect import channel_socket_types\n", "from prompt_toolkit.key_binding.bindings.named_commands import uppercase_word\n", "import pandas as pd\n", "from scipy.fft import fft, ifft\n", "from experiment_loader import load_2d_experiment, load_3d_experiment\n", "from modeling import *\n", "# plt.rcParams['figure.figsize'] = [25, 15]" ], "outputs": [], "execution_count": 1 }, { "cell_type": "code", "id": "37bf71a9-de31-4274-8b55-d20efc1bf556", "metadata": { "ExecuteTime": { "end_time": "2025-09-16T09:12:04.182889Z", "start_time": "2025-09-16T09:12:04.180643Z" } }, "source": [ "PLOT_WIDTH = 2000\n", "PLOT_HEIGHT = 1000" ], "outputs": [], "execution_count": 2 }, { "cell_type": "code", "id": "a96ea0301fc7692a", "metadata": { "ExecuteTime": { "end_time": "2025-09-16T09:12:04.234181Z", "start_time": "2025-09-16T09:12:04.228232Z" } }, "source": [ "channels, channel_meas = load_2d_experiment(\"./lut_channnel_sweep.csv\")\n", "filters, filter_meas = load_2d_experiment(\"./lut_filter_sweep.csv\")\n", "inputs, input_meas = load_2d_experiment(\"./lut_input_sweep.csv\")\n", "channel_cf, filters_cf, channel_filter_meas = load_3d_experiment(\"./lut_channel_filter_sweep.csv\")" ], "outputs": [], "execution_count": 3 }, { "cell_type": "code", "id": "c7abf7a2802a93b8", "metadata": { "ExecuteTime": { "end_time": "2025-09-16T09:12:04.280522Z", "start_time": "2025-09-16T09:12:04.278067Z" } }, "source": [], "outputs": [], "execution_count": null }, { "cell_type": "code", "id": "9a653659b7f067cf", "metadata": { "ExecuteTime": { "end_time": "2025-09-16T09:12:05.817772Z", "start_time": "2025-09-16T09:12:04.325377Z" } }, "source": [ "with open('./lut_filter_sweep.csv') as csvfile:\n", " spamreader = csv.reader(csvfile, delimiter=',', quotechar='|')\n", " rows = list(spamreader)\n", " filters = [int(row[0]) for row in rows]\n", " filter_meas = [float(row[1]) for row in rows]\n", "fig = go.Figure()\n", "fig.add_trace(go.Scatter(x=filters, y=filter_meas, name=\"Filter Measurements\"))\n", "\n", "fig.update_layout(\n", " autosize=False,\n", " width=PLOT_WIDTH,\n", " height=PLOT_HEIGHT,\n", ")" ], "outputs": [ { "data": { "application/vnd.plotly.v1+json": { "data": [ { "name": "Filter Measurements", "x": [ 120, 123, 126, 129, 132, 135, 138, 141, 144, 147, 150, 153, 156, 159, 162, 165, 168, 171, 174, 177, 180, 183, 186, 189, 192, 195, 198, 201, 204, 207, 210, 213, 216, 219 ], "y": [ 11.614275169372558, 11.62683040865006, 11.609593504566257, 21.01204776763916, 21.00911427368692, 21.01886631193615, 21.016238550986014, 21.001356887817384, 21.001993673819083, 21.052812576293945, 21.020305633544922, 21.064988181704567, 21.066908740997313, 20.99600954055786, 21.086511898040772, 21.07921895980835, 21.069702434539796, 21.131116962432863, 21.0734751701355, 21.139559841156007, 21.14546914534135, 21.114066351027716, 21.19964141845703, 21.035769762311663, 21.05053930282593, 23.1165470123291, 23.102612686157226, 23.092874813079835, 23.09945955276489, 23.09906873703003, 23.127984142303468, 23.121894550323486, 23.127475239680365, 23.114936765034994 ], "type": "scatter" } ], "layout": { "template": { "data": { "histogram2dcontour": [ { "type": "histogram2dcontour", "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ] } ], "choropleth": [ { "type": "choropleth", "colorbar": { "outlinewidth": 0, "ticks": "" } } ], "histogram2d": [ { "type": "histogram2d", "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ] } ], "heatmap": [ { "type": "heatmap", "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ] } ], "contourcarpet": [ { "type": "contourcarpet", "colorbar": { "outlinewidth": 0, "ticks": "" } } ], "contour": [ { "type": "contour", "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ] } ], "surface": [ { "type": "surface", "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ] } ], "mesh3d": [ { "type": "mesh3d", "colorbar": { "outlinewidth": 0, "ticks": "" } } ], "scatter": [ { "marker": { "line": { "color": "#283442" } }, "type": "scatter" } ], "parcoords": [ { "type": "parcoords", "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } } } ], "scatterpolargl": [ { "type": "scatterpolargl", "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } } } ], "bar": [ { "error_x": { "color": "#f2f5fa" }, "error_y": { "color": "#f2f5fa" }, "marker": { "line": { "color": "rgb(17,17,17)", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "bar" } ], "scattergeo": [ { "type": "scattergeo", "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } } } ], "scatterpolar": [ { "type": "scatterpolar", "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } } } ], "histogram": [ { "marker": { "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "histogram" } ], "scattergl": [ { "marker": { "line": { "color": "#283442" } }, "type": "scattergl" } ], "scatter3d": [ { "type": "scatter3d", "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } } } ], "scattermap": [ { "type": "scattermap", "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } } } ], "scattermapbox": [ { "type": "scattermapbox", "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } } } ], "scatterternary": [ { "type": "scatterternary", "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } } } ], "scattercarpet": [ { "type": "scattercarpet", "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } } } ], "carpet": [ { "aaxis": { "endlinecolor": "#A2B1C6", "gridcolor": "#506784", "linecolor": "#506784", "minorgridcolor": "#506784", "startlinecolor": "#A2B1C6" }, "baxis": { "endlinecolor": "#A2B1C6", "gridcolor": "#506784", "linecolor": "#506784", "minorgridcolor": "#506784", "startlinecolor": "#A2B1C6" }, "type": "carpet" } ], "table": [ { "cells": { "fill": { "color": "#506784" }, "line": { "color": "rgb(17,17,17)" } }, "header": { "fill": { "color": "#2a3f5f" }, "line": { "color": "rgb(17,17,17)" } }, "type": "table" } ], "barpolar": [ { "marker": { "line": { "color": "rgb(17,17,17)", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "barpolar" } ], "pie": [ { "automargin": true, "type": "pie" } ] }, "layout": { "autotypenumbers": "strict", "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#f2f5fa" }, "hovermode": "closest", "hoverlabel": { "align": "left" }, "paper_bgcolor": "rgb(17,17,17)", "plot_bgcolor": "rgb(17,17,17)", "polar": { "bgcolor": "rgb(17,17,17)", "angularaxis": { "gridcolor": "#506784", "linecolor": "#506784", "ticks": "" }, "radialaxis": { "gridcolor": "#506784", "linecolor": "#506784", "ticks": "" } }, "ternary": { "bgcolor": "rgb(17,17,17)", "aaxis": { "gridcolor": "#506784", "linecolor": "#506784", "ticks": "" }, "baxis": { "gridcolor": "#506784", "linecolor": "#506784", "ticks": "" }, "caxis": { "gridcolor": "#506784", "linecolor": "#506784", "ticks": "" } }, "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "sequential": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "sequentialminus": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ] }, "xaxis": { "gridcolor": "#283442", "linecolor": "#506784", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "#283442", "automargin": true, "zerolinewidth": 2 }, "yaxis": { "gridcolor": "#283442", "linecolor": "#506784", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "#283442", "automargin": true, "zerolinewidth": 2 }, "scene": { "xaxis": { "backgroundcolor": "rgb(17,17,17)", "gridcolor": "#506784", "linecolor": "#506784", "showbackground": true, "ticks": "", "zerolinecolor": "#C8D4E3", "gridwidth": 2 }, "yaxis": { "backgroundcolor": "rgb(17,17,17)", "gridcolor": "#506784", "linecolor": "#506784", "showbackground": true, "ticks": "", "zerolinecolor": "#C8D4E3", "gridwidth": 2 }, "zaxis": { "backgroundcolor": "rgb(17,17,17)", "gridcolor": "#506784", "linecolor": "#506784", "showbackground": true, "ticks": "", "zerolinecolor": "#C8D4E3", "gridwidth": 2 } }, "shapedefaults": { "line": { "color": "#f2f5fa" } }, "annotationdefaults": { "arrowcolor": "#f2f5fa", "arrowhead": 0, "arrowwidth": 1 }, "geo": { "bgcolor": "rgb(17,17,17)", "landcolor": "rgb(17,17,17)", "subunitcolor": "#506784", "showland": true, "showlakes": true, "lakecolor": "rgb(17,17,17)" }, "title": { "x": 0.05 }, "updatemenudefaults": { "bgcolor": "#506784", "borderwidth": 0 }, "sliderdefaults": { "bgcolor": "#C8D4E3", "borderwidth": 1, "bordercolor": "rgb(17,17,17)", "tickwidth": 0 }, "mapbox": { "style": "dark" } } }, "autosize": false, "width": 2000, "height": 1000 }, "config": { "plotlyServerURL": "https://plot.ly" } } }, "metadata": {}, "output_type": "display_data" } ], "execution_count": 4 }, { "cell_type": "code", "id": "361ee9ff66d1b6e5", "metadata": { "ExecuteTime": { "end_time": "2025-09-16T09:12:05.881136Z", "start_time": "2025-09-16T09:12:05.857599Z" } }, "source": [ "with open('./consuming_channnel_sweep.csv') as csvfile:\n", " spamreader = csv.reader(csvfile, delimiter=',', quotechar='|')\n", " rows = list(spamreader)\n", " filters = [int(row[0]) for row in rows]\n", " filter_meas = [float(row[1]) for row in rows]\n", "fig = go.Figure()\n", "fig.add_trace(go.Scatter(x=filters, y=filter_meas, name=\"Filter Measurements\"))\n", "\n", "fig.update_layout(\n", " autosize=False,\n", " width=PLOT_WIDTH,\n", " height=PLOT_HEIGHT,\n", ")" ], "outputs": [ { "data": { "application/vnd.plotly.v1+json": { "data": [ { "name": "Filter Measurements", "x": [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 368, 369, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, 380, 381, 382, 383, 384, 385, 386, 387, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 401, 402, 403, 404, 405, 406, 407, 408, 409, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427, 428, 429, 430, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441, 442, 443, 444, 445, 446, 447, 448, 449, 450, 451, 452, 453, 454, 455, 456, 457, 458, 459, 460, 461, 462, 463, 464, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 475, 476, 477, 478, 479, 480, 481, 482, 483, 484, 485, 486, 487, 488, 489, 490, 491, 492, 493, 494, 495, 496, 497, 498, 499, 500, 501, 502, 503, 504, 505, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517, 518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530, 531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543, 544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560, 561, 562, 563, 564, 565, 566, 567, 568, 569, 570, 571, 572, 573, 574, 575, 576, 577, 578, 579, 580, 581, 582, 583, 584, 585, 586, 587, 588, 589, 590, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 601, 602, 603, 604, 605, 606, 607, 608, 609, 610, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 621, 622, 623, 624, 625, 626, 627, 628, 629, 630, 631, 632, 633, 634, 635, 636, 637, 638, 639, 640, 641, 642, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 685, 686, 687, 688, 689, 690, 691, 692, 693, 694, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706, 707, 708, 709, 710, 711, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740, 741, 742, 743, 744, 745, 746, 747, 748, 749, 750, 751, 752, 753, 754, 755, 756, 757, 758, 759, 760, 761, 762, 763, 764, 765, 766, 767, 768, 769, 770, 771, 772, 773, 774, 775, 776, 777, 778, 779, 780, 781, 782, 783, 784, 785, 786, 787, 788, 789, 790, 791, 792, 793, 794, 795, 796, 797, 798, 799, 800, 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 846, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 858, 859, 860, 861, 862, 863, 864, 865, 866, 867, 868, 869, 870, 871, 872, 873, 874, 875, 876, 877, 878, 879, 880, 881, 882, 883, 884, 885, 886, 887, 888, 889, 890, 891, 892, 893, 894, 895, 896, 897, 898, 899, 900, 901, 902, 903, 904, 905, 906, 907, 908, 909, 910, 911, 912, 913, 914, 915, 916, 917, 918, 919, 920, 921, 922, 923, 924, 925, 926, 927, 928, 929, 930, 931, 932, 933, 934, 935, 936, 937, 938, 939, 940, 941, 942, 943, 944, 945, 946, 947, 948, 949, 950, 951, 952, 953, 954, 955, 956, 957, 958, 959, 960, 961, 962, 963, 964, 965, 966, 967, 968, 969, 970, 971, 972, 973, 974, 975, 976, 977, 978, 979, 980, 981, 982, 983, 984, 985, 986, 987, 988, 989, 990, 991, 992, 993, 994, 995, 996, 997, 998, 999, 1000, 1001, 1002, 1003, 1004, 1005, 1006, 1007, 1008, 1009, 1010, 1011, 1012, 1013, 1014, 1015, 1016, 1017, 1018, 1019, 1020, 1021, 1022, 1023, 1024, 1025, 1026, 1027, 1028, 1029, 1030, 1031, 1032, 1033, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048, 1049 ], "y": [ 8.686472761219946, 8.682130858302116, 8.689024036213503, 8.688051176071166, 8.679489697524108, 8.694312677383422, 8.692254447937012, 8.662843179702758, 8.702793910585601, 8.68563368381598, 8.696695905336192, 8.691185665130615, 8.695531129837036, 8.695329713821412, 8.69656481742859, 8.687953469640922, 8.516974921453567, 8.514110374450684, 8.513575333815355, 8.51174967629569, 8.515676736831665, 8.515888993654029, 8.515680063687839, 8.51451406171245, 8.515850657508487, 8.515152441716827, 8.513225603103638, 8.515846443176269, 8.51724656422933, 8.514118337631226, 8.512667188644409, 8.51190242767334, 8.516305637359618, 8.51252957979838, 8.51199131011963, 8.513359880447387, 8.51183303626808, 8.511926317214966, 8.513382495028301, 8.514740800857544, 8.514334013967803, 8.517492174047284, 8.513355108407827, 8.512107800464241, 8.512398433685302, 8.51543049812317, 8.515376043319701, 8.516657638549805, 8.514400005340576, 8.51498236656189, 8.514806667963663, 8.51550895785108, 8.514324272380156, 8.515211015939713, 8.515249586105346, 8.514126300811768, 8.514524481595696, 8.513758420944214, 8.51426558494568, 8.516365322589873, 8.513855207534064, 8.515324783325195, 8.51501601934433, 8.51528787612915, 8.515408384039047, 8.514206229029474, 8.514427090739156, 8.515054368972779, 8.511189301808676, 8.512799072265626, 8.513323211669922, 8.514886331558227, 8.5112895488739, 8.514566326141358, 8.511068102518717, 8.514846420288086, 8.514521503448487, 8.513889646530151, 8.516344004207188, 8.51289758682251, 8.513755581595682, 8.513566493988037, 8.515323305130005, 8.514177608489991, 8.51422721862793, 8.514071195356307, 8.513338462166164, 8.512935972213745, 8.5119836657655, 8.513918399810791, 8.513044913609823, 8.513275098800658, 8.516639238245347, 8.514062451153267, 8.512289902448199, 8.51490888595581, 8.514974355697632, 8.514091300964356, 8.513692712783813, 8.5133535861969, 8.510045943221426, 8.513638587225051, 8.51220965385437, 8.509718766579262, 8.512313454239457, 8.513990281305917, 8.514289617538452, 8.51297755241394, 8.51355047225952, 8.513494284256645, 8.517290202054111, 8.516179323196411, 8.514015978032893, 8.513545560836793, 8.512203216552734, 8.51242561340332, 8.511547415597098, 8.511972861953929, 8.513156747817993, 8.513209629058839, 8.512693712266826, 8.514136870702108, 8.510796737670898, 8.51447353363037, 8.515063810348511, 8.515425007712393, 8.516569566726684, 8.514834890018438, 8.515042980775139, 8.51166587652162, 8.513767341772715, 8.512462472915649, 8.514559766371473, 8.51615047454834, 8.515491247177124, 8.516119508661776, 8.512857627868652, 8.51330620333892, 8.51473593711853, 8.513912010192872, 8.512419271469117, 8.515486717224121, 8.513972854614257, 8.51302719116211, 8.511612751904655, 8.50957760810852, 8.512333869934082, 8.513367970784506, 8.516348791122436, 8.512738370895386, 8.516989348512707, 8.516254472732545, 8.51467994848887, 8.512885830619119, 8.508721590042114, 8.513150358200074, 8.5155104637146, 8.51532083628129, 8.511190536174368, 8.514373302459717, 8.512881565093995, 8.513072907924652, 8.516865539550782, 8.514905226858039, 8.514206190367002, 8.516887998580932, 8.513920359971245, 8.514426531110491, 8.512887010296572, 8.516606330871582, 8.516247940063476, 8.510476779937743, 8.512831954956054, 8.515579857512149, 8.513440050230436, 8.514697647094726, 8.51676187207622, 8.516725408270004, 8.513273477554321, 8.513276767730712, 8.513807916641236, 8.51360001564026, 8.517020797729492, 8.512652091260227, 8.516020774841309, 8.51419468720754, 8.512781947851181, 8.514521551132201, 8.51431679725647, 8.511867189407349, 8.51526935749015, 8.512870152791342, 8.510849537387971, 8.513155165172758, 8.514494371414184, 8.514782333374024, 8.516589800516764, 8.511947345733642, 8.51046404838562, 8.512713527679443, 8.513397307623, 8.512534475326538, 8.512154232371937, 8.51249918937683, 8.513145637512206, 8.51318564414978, 8.513803359000914, 8.513320383818254, 8.513163185119629, 8.512493806136282, 8.517070205123336, 8.512980875761613, 8.514487981796265, 8.514312403542656, 8.510979223251343, 8.513798332214355, 8.51317093589089, 8.515763187408448, 8.511942386627197, 8.511950448262606, 8.513107204437256, 8.515404481838404, 8.516244792938233, 8.51561051607132, 8.515396308898925, 8.513814608256022, 8.51413607597351, 8.51485556647891, 8.514627122879029, 8.51379361152649, 8.513584089279174, 8.51463532447815, 8.511847972869873, 8.512672090530396, 8.514327102237278, 8.514051428938334, 8.514814376831055, 8.51410732269287, 8.513734379130288, 8.512280574211708, 8.513036823272705, 8.514177284240724, 8.515678535808217, 8.513825607299804, 8.513701033404493, 8.513934421539307, 8.513516855239867, 8.513392996280752, 8.511716842651367, 8.51359363132053, 8.51272560536945, 8.511667096937025, 8.51240496635437, 8.514499139785766, 8.51451826095581, 8.515177679061889, 8.513718509674073, 8.51166558265686, 8.514092547552925, 8.512291695476787, 8.509552097320556, 8.514215532938639, 8.513387455940247, 8.512156915664672, 8.513515281677247, 8.512923422313872, 8.512093925476075, 8.515899276733398, 8.514619207382202, 8.514083928699735, 8.51546082496643, 8.514259338378906, 8.514019298553468, 8.513308979216076, 8.513392114639283, 8.511838664179264, 8.514049992416844, 8.515886354446412, 8.514547847566151, 8.515433210007687, 8.51409813563029, 8.516095924377442, 8.514588928222656, 8.513573548150442, 8.512525134616428, 8.511195278167724, 8.512068208058675, 8.515679127461201, 8.515480041503906, 8.5158127784729, 8.515583992004395, 8.513896083831787, 8.51351523399353, 8.513551902770995, 8.511971910794577, 8.511673593521119, 8.512770652770996, 8.510457468032836, 8.513430309295654, 8.514328050613404, 8.515796585083008, 8.513030195236206, 8.515300703048705, 8.514126396179199, 8.513120047251384, 8.512774058750697, 8.514703941345214, 8.511611175537109, 8.512765324937028, 8.512339550515879, 8.512918472290039, 8.51527802840523, 8.514229706355504, 8.513190364837646, 8.513344097137452, 8.515051221847534, 8.512843132019043, 8.51473913192749, 8.513404893875123, 8.515387296676636, 8.515865152532404, 8.51644163131714, 8.51305594444275, 8.51200475692749, 8.51574239730835, 8.514075136184692, 8.512723711595179, 8.513668775558472, 8.514006519317627, 8.51411509513855, 8.515998458862304, 8.511998588247568, 8.514489945718797, 8.514204835891723, 8.51438889503479, 8.512409891401019, 8.512348842620849, 8.515427255630494, 8.511364573524112, 8.513118700547652, 8.509900507719621, 8.516504096984864, 8.514390468597412, 8.515340757369994, 8.51434392929077, 8.518084859848022, 8.512436180783991, 8.514609622955323, 8.513278416224889, 8.515041589736938, 8.515187691305286, 8.512972831726074, 8.51482720375061, 8.514598251937272, 8.514294385910034, 8.515825544084821, 8.516550250675367, 8.515678358078002, 8.512894587083297, 8.51422872543335, 8.512676668167114, 8.512310457229614, 8.51370724460535, 8.51561918258667, 8.518873000268492, 8.514472007751465, 8.51184639930725, 8.514145190899189, 8.514422369003295, 8.510203218460083, 8.511791944503784, 8.516881608963013, 8.513048028945922, 8.516529386693781, 8.51317286491394, 8.515632009506225, 8.51458586179293, 8.514857578277589, 8.515172719955444, 8.511497640609742, 8.514256048202515, 8.512343122604046, 8.513820791244507, 8.515124702453614, 8.515982484817505, 8.514839573910361, 8.516499233245849, 8.517156839370728, 8.51421864827474, 8.51702561378479, 8.516238403320312, 8.51712144504894, 8.512791542779832, 8.514208726208619, 8.513570354098366, 8.51333122253418, 8.514250531608676, 8.515496015548706, 8.51567393541336, 8.514171414670692, 8.51461965710509, 8.514047956466674, 8.513926315307618, 8.514411115646363, 8.514108848571777, 8.514818615383572, 8.513859224319457, 8.515319967269898, 8.51427674293518, 8.515214443206787, 8.51627335266725, 8.514894342422485, 8.515704932036224, 8.513882913897115, 8.51244186219715, 8.515951367675282, 8.516782862799507, 8.515375995635987, 8.51441672870091, 8.516675595883969, 8.51615520759865, 8.511739206314086, 8.516809447866972, 8.516324996948242, 8.512786908583207, 8.51390520731608, 8.516461047259243, 8.513270378112793, 8.514806461334228, 8.513021303259809, 8.514399909973145, 8.51379199028015, 8.513454341888428, 8.514480590820312, 8.514719396534533, 8.514841461181641, 8.512582445144654, 8.518148803710938, 8.515552857457376, 8.517227125167846, 8.514503955841064, 8.515521669387818, 8.514932775497437, 8.512720012664795, 8.513083457946777, 8.51222326641991, 8.513913679122926, 8.51645917892456, 8.517705770639273, 8.512233638763428, 8.513288021087646, 8.512519229542125, 8.5151535987854, 8.516288121541342, 8.51558254076087, 8.516451168060303, 8.5149489402771, 8.514778677622477, 8.51151155520089, 8.51274881362915, 8.513927984237672, 8.518999137878417, 8.516545629501342, 8.516585925529743, 8.515202579498292, 8.513171486232592, 8.512828874588013, 8.517799256553113, 8.515545511245728, 8.515931224822998, 8.515873575210572, 8.516988507023564, 8.514273120510962, 8.516520706382957, 8.51279683113098, 8.517208841111925, 8.51459093093872, 8.513310384750366, 8.512385606765747, 8.514954370610853, 8.517155497907156, 8.512404727935792, 8.514477856953938, 8.515068769454956, 8.518033599853515, 8.517294359207153, 8.51797432899475, 8.515739250183106, 8.513238366444906, 8.510101470927387, 8.511775984280352, 8.514489698410035, 8.515459108352662, 8.514214372634887, 8.51517915725708, 8.514820623397828, 8.515982389450073, 8.515535385377946, 8.516459131240845, 8.513964700698853, 8.517702225715883, 8.515788793563843, 8.514415979385376, 8.516528034210205, 8.51774787902832, 8.515262222290039, 8.51732316017151, 8.516217565536499, 8.51666652865526, 8.514558474222818, 8.516200017929076, 8.515507202148438, 8.518746605625859, 8.51567420092496, 8.516744041442871, 8.518007946014404, 8.51448424657186, 8.514169597625733, 8.514664914872911, 8.51329755783081, 8.51465753229653, 8.515126203879332, 8.512604746325263, 8.514875173568726, 8.51222711993802, 8.516337490081787, 8.515502405166625, 8.515651226043701, 8.512964773178101, 8.514188517694889, 8.514740840808765, 8.5169086933136, 8.514851379394532, 8.516946286571269, 8.515992028372628, 8.518170058727264, 8.516512012481689, 8.512394666671753, 8.516234629081957, 8.515408039093018, 8.513852787017822, 8.513796758651733, 8.51279831374133, 8.518346786499023, 8.515037953853607, 8.513277292251587, 8.515859079360961, 8.515414381027222, 8.515808010101319, 8.513493277809836, 8.513416938781738, 8.513937091827392, 8.514351940155029, 8.517603355541564, 8.516096556628192, 8.513339233398437, 8.513267135620117, 8.514687967300414, 8.514468812942505, 8.51299468330715, 8.512702369689942, 8.51438398361206, 8.513956880569458, 8.516497611999512, 8.51644335852729, 8.514567303657532, 8.514375773343174, 8.514992904663085, 8.51594911302839, 8.513649395533971, 8.51608066558838, 8.515963452202934, 8.512345600128175, 8.513209533691406, 8.516168022155762, 8.515014362335204, 8.51740484237671, 8.516323328018188, 8.516643421990532, 8.51391636883771, 8.515518856048583, 8.518137081559882, 8.517860841751098, 8.51532802581787, 8.512874298095703, 8.516032012733254, 8.514915754628737, 8.514496078491211, 8.513139247894287, 8.516870307922364, 8.517643004655838, 8.513687992095948, 8.514661519032604, 8.515605772695233, 8.51634407043457, 8.513584772745768, 8.518162839552936, 8.514072165197256, 8.516199922561645, 8.51755611984818, 8.515561532974242, 8.51656049297702, 8.516527536753062, 8.515339136123657, 8.514480715212615, 8.516515987260002, 8.513886404037475, 8.515319769723074, 8.516545382412998, 8.514446905681066, 8.515454803194318, 8.516950368881226, 8.516208028793335, 8.513409566879272, 8.5123375415802, 8.51417076587677, 8.514071909586589, 8.512515211105347, 8.516016101837158, 8.513367938995362, 8.514970748655257, 8.51337245658592, 8.514385604858399, 8.514559075639054, 8.516156816482544, 8.515982294082642, 8.515224304199219, 8.514597688402448, 8.513328007289342, 8.51395845413208, 8.514425992965698, 8.515653371810913, 8.512589699881417, 8.51458568572998, 8.516599988937378, 8.515012836456298, 8.514453315734864, 8.514790819046345, 8.5130943775177, 8.51632767631894, 8.516443179203915, 8.512022495269775, 8.516232013702393, 8.51772403717041, 8.513180227840648, 8.515177536010743, 8.518790949945865, 8.516415921998885, 8.513987988233566, 8.514383935928345, 8.514501639774867, 8.514444153884362, 8.515108919143676, 8.515873527526855, 8.517167409261068, 8.518391181682718, 8.513976874174896, 8.514027003584237, 8.515747213363648, 8.51631997181819, 8.515532732009888, 8.515899324417115, 8.515804372514998, 8.515673160552979, 8.518394808615408, 8.518920087814331, 8.518074344186221, 8.517159938812256, 8.51295830653264, 8.515724868774415, 8.515972805023193, 8.515499750773111, 8.51316338200723, 8.516624591968677, 8.5153968334198, 8.517480039596558, 8.517622327804565, 8.516155878702799, 8.518529501828281, 8.513345670700073, 8.515538435715895, 8.515629410743713, 8.515790462493896, 8.514698938889937, 8.513890757589397, 8.516285566183237, 8.517414379119874, 8.517622470855713, 8.516571081601656, 8.517470502853394, 8.515761638509817, 8.516297531127929, 8.518148603893462, 8.518628151186052, 8.51611864566803, 8.51734733581543, 8.514959955215454, 8.515184508429634, 8.517101651146298, 8.515380776446799, 8.5186797278268, 8.514981644494194, 8.5102463722229, 8.514220733642578, 8.51523199081421, 8.516326904296875, 8.516449689865112, 8.51676959991455, 8.514604140972269, 8.516076219492945, 8.515945625305175, 8.514772097269693, 8.51609487886782, 8.515774602475373, 8.509857606887817, 8.515284824371339, 8.515395259857177, 8.516440337812396, 8.515943310477518, 8.516597066606794, 8.51744647026062, 8.512170098044656, 8.513129353523254, 8.518225622177123, 8.517329549789428, 8.519105354944864, 8.514394089027688, 8.514299201965333, 8.517351407271166, 8.515688816706339, 8.515391950254086, 8.51578392982483, 8.516436656316122, 8.512976050376892, 8.517953634262085, 8.515548849105835, 8.517246389389038, 8.514509176596617, 8.517829690660749, 8.514867162704467, 8.51807680130005, 8.516629040241241, 8.51256971359253, 8.516133285704113, 8.517000807092545, 8.515537188603329, 8.519401967525482, 8.514955139160156, 8.515093366305033, 8.51561918258667, 8.516348743438721, 8.515446234722527, 8.514644813537597, 8.515247208731514, 8.516470772879464, 8.514685478210449, 8.514555168151855, 8.515580749511718, 8.518894876752581, 8.516462373733521, 8.516532291065563, 8.517693815560177, 8.515558338165283, 8.51701629638672, 8.516807998929705, 8.513221379482385, 8.517084836959839, 8.515025615692139, 8.512224074332945, 8.516561851501464, 8.517326402664185, 8.514012513337311, 8.514067316055298, 8.51707972249677, 8.516898700169154, 8.515601634979248, 8.517072536327221, 8.515255587441581, 8.513601267779315, 8.514974403381348, 8.515613925072454, 8.518374227708385, 8.517675823635525, 8.515001583099366, 8.51730102300644, 8.518327612625924, 8.514160013198852, 8.516327726429907, 8.51729968877939, 8.514793634414673, 8.517862830843244, 8.516911430358887, 8.51710557937622, 8.51819200515747, 8.51612799095385, 8.516285116022283, 8.518340989163047, 8.518665938541806, 8.512876796722413, 8.515412534986224, 8.515828475952148, 8.51368268330892, 8.515715996424357, 8.517340377525047, 8.520043808480967, 8.51835771040483, 8.519242172241212, 8.514461278915405, 8.516284847259522, 8.514872074127197, 8.517166376113892, 8.51434235572815, 8.514673493125223, 8.517443265670385, 8.517340557915825, 8.515651226043701, 8.517059860229493, 8.517399421105019, 8.516625909244313, 8.513158573823816, 8.515392030988421, 8.511850357055664, 8.51524486541748, 8.51846694946289, 8.516712203170314, 8.517114475795202, 8.517619180679322, 8.515779256820679, 8.519206352233887, 8.516635274887085, 8.517508840560913, 8.511334958283797, 8.51712327003479, 8.516354936541934, 8.515649557113647, 8.516392974853515, 8.517177303632101, 8.516216770295173, 8.515851374595396, 8.518585586547852, 8.515614414215088, 8.514746458634086, 8.514157515305738, 8.514345666636592, 8.515150456201463, 8.51730372828822, 8.515476894378661, 8.517667733705961, 8.512691793770626, 8.513763189315796, 8.516125373840332, 8.515442257835751, 8.518333611664948, 8.514566326141358, 8.514155118361764, 8.515436887741089, 8.515866509799299, 8.519313621520997, 8.516103304349459, 8.517921141215734, 8.518336098769616, 8.516948699951172, 8.515656089782714, 8.513772773742676, 8.516971206665039, 8.515184020996093, 8.515971279144287, 8.516505575180053, 8.517920902797155, 8.515643683346836, 8.51737652506147, 8.51455722135656, 8.517273008823395, 8.517070880303017, 8.516931247711181, 8.514749093489213, 8.514582492687085, 8.514703941345214, 8.514602989986026, 8.517345155988421, 8.514582074921707, 8.513313674926758, 8.51881167695329, 8.512189801534017, 8.515983404936614, 8.513596351330097, 8.513596500669207, 8.51701922416687, 8.515202641487122, 8.516191959381104, 8.519109907604399, 8.5138728055087, 8.513253160425135, 8.519844729725907, 8.517808055877685, 8.516979326520648, 8.513372755050659, 8.517264080047607, 8.51608196258545, 8.513804817199707, 8.515912429146145, 8.516187080970177, 8.516631748365318, 8.514928540875834, 8.515588808059693, 8.514019183623486, 8.514636620231297, 8.517121275266012, 8.518358325958252, 8.517371225357056, 8.516912460327148, 8.517713594436646, 8.51742228146257, 8.519855346679687, 8.515644884109497, 8.516428357078915, 8.512377595901489, 8.514022181110997, 8.515499162673951, 8.515292882919312, 8.519518886293683, 8.5188542842865, 8.51669552746941, 8.51794359419081, 8.51760122511122, 8.515297555923462, 8.5168447971344, 8.514482957345468, 8.514653629726833, 8.515724754333496, 8.515590588251749, 8.51415195465088, 8.514137061866554, 8.513195111201359, 8.516463279724121, 8.516988277435303, 8.521926164627075, 8.517879610476287, 8.514605522155762, 8.515917986631393, 8.515125766877205, 8.515849466677066, 8.518220699194705, 8.518194805492055, 8.516391007796578, 8.516158727499155, 8.515379685621996, 8.516865539550782, 8.51697598184858, 8.517216143400773, 8.515392104784647, 8.514926433563232, 8.518164157867432, 8.512758350372314, 8.515051053917926, 8.515475130081176, 8.515983352661133, 8.517518377304077, 8.513894510269164, 8.515912633953672, 8.515979103420092, 8.516475200653076, 8.514717012643814, 8.515093303862072, 8.517417621612548, 8.518680609189547, 8.515717106480752, 8.516556866963704, 8.516590508547695, 8.514088503519694, 8.513832304212782, 8.516331195831299, 8.515993547439574, 8.51683030128479, 8.515449714660644, 8.516511964797974, 8.514777154633492, 8.517509380976358, 8.515492107557213, 8.51821567898705, 8.516025590896607, 8.515387578444047, 8.515299120256978, 8.51720978663518, 8.51799205938975, 8.518888835249276, 8.516249561309815, 8.51794719696045, 8.518401622772217, 8.517699241638184, 8.514224004745483, 8.5150545835495, 8.512022336324057, 8.516563320159912, 8.51828200241615, 8.518710894462389, 8.51350390392801, 8.511865577697755, 8.513612747192383, 8.514111995697021, 8.514963354383196, 8.51600383758545, 8.517352872424656, 8.51571747352337, 8.516290041865135, 8.515586728635041, 8.518368005752563, 8.516203706914728, 8.514487210442038, 8.515586853027344, 8.51841435432434, 8.512463302612305, 8.517182445526123, 8.514397402604422, 8.512345881689162, 8.51813150488812, 8.51185967372014, 8.515316772460938, 8.517266670862833, 8.518549315134685, 8.519472476414272, 8.518749554951986, 8.515525169372559, 8.512956717918659, 8.513003206253051, 8.5148468653361, 8.517425450411709, 8.515675374439784, 8.516501808166504, 8.514040925767686, 8.515320747129378, 8.518654394149781, 8.51566389628819, 8.515791312507961, 8.516684818267823, 8.516117413838705, 8.519259262084962, 8.518831351707721, 8.51707806954017, 8.51844801902771, 8.520367643568251, 8.516151428222656, 8.51520222630994, 8.51902141571045, 8.519285899836843, 8.514662313461304, 8.513465642929077, 8.51736478805542, 8.514734115600586 ], "type": "scatter" } ], "layout": { "template": { "data": { "histogram2dcontour": [ { "type": "histogram2dcontour", "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ] } ], "choropleth": [ { "type": "choropleth", "colorbar": { "outlinewidth": 0, "ticks": "" } } ], "histogram2d": [ { "type": "histogram2d", "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ] } ], "heatmap": [ { "type": "heatmap", "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ] } ], "contourcarpet": [ { "type": "contourcarpet", "colorbar": { "outlinewidth": 0, "ticks": "" } } ], "contour": [ { "type": "contour", "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ] } ], "surface": [ { "type": "surface", "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ] } ], "mesh3d": [ { "type": "mesh3d", "colorbar": { "outlinewidth": 0, "ticks": "" } } ], "scatter": [ { "marker": { "line": { "color": "#283442" } }, "type": "scatter" } ], "parcoords": [ { "type": "parcoords", "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } } } ], "scatterpolargl": [ { "type": "scatterpolargl", "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } } } ], "bar": [ { "error_x": { "color": "#f2f5fa" }, "error_y": { "color": "#f2f5fa" }, "marker": { "line": { "color": "rgb(17,17,17)", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "bar" } ], "scattergeo": [ { "type": "scattergeo", "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } } } ], "scatterpolar": [ { "type": "scatterpolar", "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } } } ], "histogram": [ { "marker": { "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "histogram" } ], "scattergl": [ { "marker": { "line": { "color": "#283442" } }, "type": "scattergl" } ], "scatter3d": [ { "type": "scatter3d", "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } } } ], "scattermap": [ { "type": "scattermap", "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } } } ], "scattermapbox": [ { "type": "scattermapbox", "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } } } ], "scatterternary": [ { "type": "scatterternary", "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } } } ], "scattercarpet": [ { "type": "scattercarpet", "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } } } ], "carpet": [ { "aaxis": { "endlinecolor": "#A2B1C6", "gridcolor": "#506784", "linecolor": "#506784", "minorgridcolor": "#506784", "startlinecolor": "#A2B1C6" }, "baxis": { "endlinecolor": "#A2B1C6", "gridcolor": "#506784", "linecolor": "#506784", "minorgridcolor": "#506784", "startlinecolor": "#A2B1C6" }, "type": "carpet" } ], "table": [ { "cells": { "fill": { "color": "#506784" }, "line": { "color": "rgb(17,17,17)" } }, "header": { "fill": { "color": "#2a3f5f" }, "line": { "color": "rgb(17,17,17)" } }, "type": "table" } ], "barpolar": [ { "marker": { "line": { "color": "rgb(17,17,17)", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "barpolar" } ], "pie": [ { "automargin": true, "type": "pie" } ] }, "layout": { "autotypenumbers": "strict", "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#f2f5fa" }, "hovermode": "closest", "hoverlabel": { "align": "left" }, "paper_bgcolor": "rgb(17,17,17)", "plot_bgcolor": "rgb(17,17,17)", "polar": { "bgcolor": "rgb(17,17,17)", "angularaxis": { "gridcolor": "#506784", "linecolor": "#506784", "ticks": "" }, "radialaxis": { "gridcolor": "#506784", "linecolor": "#506784", "ticks": "" } }, "ternary": { "bgcolor": "rgb(17,17,17)", "aaxis": { "gridcolor": "#506784", "linecolor": "#506784", "ticks": "" }, "baxis": { "gridcolor": "#506784", "linecolor": "#506784", "ticks": "" }, "caxis": { "gridcolor": "#506784", "linecolor": "#506784", "ticks": "" } }, "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "sequential": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "sequentialminus": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ] }, "xaxis": { "gridcolor": "#283442", "linecolor": "#506784", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "#283442", "automargin": true, "zerolinewidth": 2 }, "yaxis": { "gridcolor": "#283442", "linecolor": "#506784", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "#283442", "automargin": true, "zerolinewidth": 2 }, "scene": { "xaxis": { "backgroundcolor": "rgb(17,17,17)", "gridcolor": "#506784", "linecolor": "#506784", "showbackground": true, "ticks": "", "zerolinecolor": "#C8D4E3", "gridwidth": 2 }, "yaxis": { "backgroundcolor": "rgb(17,17,17)", "gridcolor": "#506784", "linecolor": "#506784", "showbackground": true, "ticks": "", "zerolinecolor": "#C8D4E3", "gridwidth": 2 }, "zaxis": { "backgroundcolor": "rgb(17,17,17)", "gridcolor": "#506784", "linecolor": "#506784", "showbackground": true, "ticks": "", "zerolinecolor": "#C8D4E3", "gridwidth": 2 } }, "shapedefaults": { "line": { "color": "#f2f5fa" } }, "annotationdefaults": { "arrowcolor": "#f2f5fa", "arrowhead": 0, "arrowwidth": 1 }, "geo": { "bgcolor": "rgb(17,17,17)", "landcolor": "rgb(17,17,17)", "subunitcolor": "#506784", "showland": true, "showlakes": true, "lakecolor": "rgb(17,17,17)" }, "title": { "x": 0.05 }, "updatemenudefaults": { "bgcolor": "#506784", "borderwidth": 0 }, "sliderdefaults": { "bgcolor": "#C8D4E3", "borderwidth": 1, "bordercolor": "rgb(17,17,17)", "tickwidth": 0 }, "mapbox": { "style": "dark" } } }, "autosize": false, "width": 2000, "height": 1000 }, "config": { "plotlyServerURL": "https://plot.ly" } } }, "metadata": {}, "output_type": "display_data" } ], "execution_count": 5 }, { "cell_type": "code", "id": "51ca081aacbae203", "metadata": { "ExecuteTime": { "end_time": "2025-09-16T09:12:06.195542Z", "start_time": "2025-09-16T09:12:05.947264Z" } }, "source": [ "\n", "\n", "# Read data from a csv\n", "df = pd.read_csv('./lut_channel_filter_sweep.csv', usecols=[\"channels\", \"filters\", \"ms\"])\n", "split_df = df.groupby('channels')\n", "fig = go.Figure()\n", "\n", "x_unique = list(set(df[\"channels\"]))\n", "x_unique.sort()\n", "y_unique = list(set(df[\"filters\"]))\n", "y_unique.sort()\n", "# print(y_unique)\n", "z = []\n", "for y in y_unique:\n", " z.append([])\n", " for x in x_unique:\n", " z[-1].append(df.loc[df[\"channels\"] == x].loc[df[\"filters\"] == y][\"ms\"].values[0])\n", "# np.reshape([x.shape[0], y.shape[0]])\n", "# print(z)\n", "fig.add_trace(go.Scatter3d(\n", " x=df['channels'],\n", " y=df['filters'],\n", " z=df['ms'],\n", " mode='markers',\n", " marker=dict(size=7),\n", " # name=f\"channel {category}\",\n", " # mode='markers+lines',\n", " line=dict(\n", " dash='dash',\n", " width=.5\n", " )\n", "))\n", "fig.add_trace(go.Surface(\n", " x=x_unique,\n", " y=y_unique,\n", " z=z,\n", "))\n", "# Customize the plot\n", "fig.update_layout(\n", " scene=dict(\n", " xaxis_title='channels',\n", " yaxis_title='filters',\n", " zaxis_title='ms'\n", " ),\n", " width=PLOT_WIDTH,\n", " height=PLOT_HEIGHT,\n", " template='plotly_white',\n", ")\n", "fig.layout.scene.camera.projection.type = \"orthographic\"\n", "# Display the plot\n", "fig.show()\n" ], "outputs": [ { "data": { "application/vnd.plotly.v1+json": { "data": [ { "line": { "dash": "dash", "width": 0.5 }, "marker": { "size": 7 }, "mode": "markers", "x": { "dtype": "i2", "bdata": "eAB4AHgAeAB4AHgAeAB4AHgAeAB7AHsAewB7AHsAewB7AHsAewB7AH4AfgB+AH4AfgB+AH4AfgB+AH4AgQCBAIEAgQCBAIEAgQCBAIEAgQCEAIQAhACEAIQAhACEAIQAhACEAIcAhwCHAIcAhwCHAIcAhwCHAIcAigCKAIoAigCKAIoAigCKAIoAigCNAI0AjQCNAI0AjQCNAI0AjQCNAJAAkACQAJAAkACQAJAAkACQAJAAkwCTAJMAkwCTAJMAkwCTAJMAkwCWAJYAlgCWAJYAlgCWAJYAlgCWAJkAmQCZAJkAmQCZAJkAmQCZAJkAnACcAJwAnACcAJwAnACcAJwAnACfAJ8AnwCfAJ8AnwCfAJ8AnwCfAKIAogCiAKIAogCiAKIAogCiAKIApQClAKUApQClAKUApQClAKUApQCoAKgAqACoAKgAqACoAKgAqACoAKsAqwCrAKsAqwCrAKsAqwCrAKsArgCuAK4ArgCuAK4ArgCuAK4ArgCxALEAsQCxALEAsQCxALEAsQCxALQAtAC0ALQAtAC0ALQAtAC0ALQAtwC3ALcAtwC3ALcAtwC3ALcAtwC6ALoAugC6ALoAugC6ALoAugC6AL0AvQC9AL0AvQC9AL0AvQC9AL0AwADAAMAAwADAAMAAwADAAMAAwADDAMMAwwDDAMMAwwDDAMMAwwDDAMYAxgDGAMYAxgDGAMYAxgDGAMYAyQDJAMkAyQDJAMkAyQDJAMkAyQDMAMwAzADMAMwAzADMAMwAzADMAM8AzwDPAM8AzwDPAM8AzwDPAM8A0gDSANIA0gDSANIA0gDSANIA0gDVANUA1QDVANUA1QDVANUA1QDVANgA2ADYANgA2ADYANgA2ADYANgA2wDbANsA2wDbANsA2wDbANsA2wA=" }, "y": { "dtype": "i2", "bdata": "ZAB0AIQAlACkALQAxADUAOQA9ABkAHQAhACUAKQAtADEANQA5AD0AGQAdACEAJQApAC0AMQA1ADkAPQAZAB0AIQAlACkALQAxADUAOQA9ABkAHQAhACUAKQAtADEANQA5AD0AGQAdACEAJQApAC0AMQA1ADkAPQAZAB0AIQAlACkALQAxADUAOQA9ABkAHQAhACUAKQAtADEANQA5AD0AGQAdACEAJQApAC0AMQA1ADkAPQAZAB0AIQAlACkALQAxADUAOQA9ABkAHQAhACUAKQAtADEANQA5AD0AGQAdACEAJQApAC0AMQA1ADkAPQAZAB0AIQAlACkALQAxADUAOQA9ABkAHQAhACUAKQAtADEANQA5AD0AGQAdACEAJQApAC0AMQA1ADkAPQAZAB0AIQAlACkALQAxADUAOQA9ABkAHQAhACUAKQAtADEANQA5AD0AGQAdACEAJQApAC0AMQA1ADkAPQAZAB0AIQAlACkALQAxADUAOQA9ABkAHQAhACUAKQAtADEANQA5AD0AGQAdACEAJQApAC0AMQA1ADkAPQAZAB0AIQAlACkALQAxADUAOQA9ABkAHQAhACUAKQAtADEANQA5AD0AGQAdACEAJQApAC0AMQA1ADkAPQAZAB0AIQAlACkALQAxADUAOQA9ABkAHQAhACUAKQAtADEANQA5AD0AGQAdACEAJQApAC0AMQA1ADkAPQAZAB0AIQAlACkALQAxADUAOQA9ABkAHQAhACUAKQAtADEANQA5AD0AGQAdACEAJQApAC0AMQA1ADkAPQAZAB0AIQAlACkALQAxADUAOQA9ABkAHQAhACUAKQAtADEANQA5AD0AGQAdACEAJQApAC0AMQA1ADkAPQAZAB0AIQAlACkALQAxADUAOQA9AA=" }, "z": { "dtype": "f8", "bdata": "L7roArdlJ0ByHMdRt3gnQDQzMwOUnDZAhmEY5vCnNkCamZkZN8Q2QDMzM1Oz5zZAx3EcF6JmN0C1tLS0Rms3QKuqqnbhdzdAzczMjHWAN0BeTsHrioQpQKn78ghxwylAMzMzY/1mOEAzMzNTaps4QJmZmaGP4zhANDMz058pOUBifWjs1HU5QAAAANjFlDlAzczMlDi3OUBnZma+lds5QLlkCHaqKSdAzszMrLg4J0DNzMzkyAA1QMfgfAwQBjVAmpmZubkYNUCamZmJZyk1QP///8dYGTdAAQAAoMUcN0AzMzNzfiU3QJqZmWmOLDdAEhER0Q0WL0D///8PHFAvQIqd2OkW9D1AAAAASLU0PkAAAACw+YI+QGZmZj53zD5AZmZmThMCP0CamZlRBCI/QAAAALC5Qz9AlqhdaRRdP0CrqqpKQRMvQBeGYfibUC9AzczMjGD1PUC96U2f2TI+QGhpaanAhD5Am5mZ2ZfMPkDNzMwEUwM/QD0K1yMlJD9AEpZ7GlhFP0Dbtm3DvGM/QM3MzLSb2SxAAAAAFcXrLECbbLLpS8M7QJuZmeG23TtAq6qqUgf2O0CamZlxFR88QGZmZkZE2DxAuG3btjPhPEAAAAD4Tuw8QNiJnRhu9DxAxU7sxOM5L0B6nueZiXYvQHTRRddjGT5AZmZmVotZPkAAAACArKc+QAAAAPDm7z5AAAAAYDIoP0CamZn5QEg/QM3MzERYbT9AlNdQ/v+OP0DNzMwM6dwsQNiJnSg96yxA3LZtW5IFO0Btpe8Vmwo7QAAAAIA1HTtAMzMz84stO0AAAADApdc8QDMzM3Np3zxAzszMfJ/qPECamZlJJvE8QGdmZo5m2yxAzczMJFbrLEAzMzNjJAU7QAEAAAhODDtAmpmZ2aAcO0AAAAA4jjM7QJqZmbm+2TxAzczMNOPjPECH8hqqP+o8QJqZmaGl8jxAnnWDyVJXL0CamZnR2J4vQCd2YheOLD5AAAAAoEFnPkA4venNF7c+QJmZmWkJAz9ACB98kJxMP0AAAADQk3A/QFZVVe0EmD9AmpmZUfq9P0DOzMwcE+wsQJmZmdFr/SxAm5mZ8f/ZO0AAAAA4j+w7QJmZmcGKEzxAcD4GZ78zPEDuvfd+eOk8QJqZmTEt8TxAllqp1T79PECamZkZRgY9QDMzMwNFoi9AHnFHDO3tL0ALWchifD8+QJqZmcFefD5AAAAAKMXYPkAzMzMLQDI/QG960ztKkD9Aq6qqyuiyP0DOzMzcpt8/QJqZmanQAUBAZmZmhmWiL0AAAAAAYO0vQH4OqWlIPj5AzczMbFV8PkA1wnKvItU+QHqe50mgMD9Aiy66cJ+JP0BmZmZWubQ/QLChvEZ94T9AetObDkQAQEBlZmaWcq0sQDMzM1OOuCxAujegDEL7OUAAAAC4JQM6QM3MzIQiETpAL1u2zB4lOkBDFrLwpp88QHTOOaeXojxAT296M1itPECamZlJn7E8QImIiJh9ljJA68ROzCy6MkAAAAAgR+JBQAAAANBMBUJAMzMzO8Y3QkAAAADErGVCQHTRRcfeiUJAzczMzMSbQkAYhmE4x7BCQDMzM4vfw0JAMzMzGz8vMUAzMzMbjDgxQCVJkgRpg0BAzczM7OCLQEDNzMwEEKJAQMP1KPxLtUBAZmZm3h4uQUAfhetxgDJBQJze9Ca9N0FAep7nGYk8QUCamZmBpC0xQM3MzLzqNzFAjbDcE+2CQEB7FK7n145AQHqe5zneoEBAmpmZURa1QEAAAAAQIC5BQKuqqqKaMkFAAAAAoEs4QUAzMzP7XD1BQAAAADCEqDJA0pvedCjLMkDQusGUZvdBQAAAAPCyG0JAmpmZIThOQkBmZmbWB3xCQJqZmfn7m0JAb3rTW06wQkDNzMwkScVCQCVJkoR/2EJAAAAAKO8tMUBVVVV99jMxQNlkk42bCUBANcJyD3YOQEDNzMx8WRRAQArXoxBpIUBAhmEYpoEyQUBmZmZGhjBBQJqZmUlxNkFAj8L1aAc5QUAzMzMb8LkyQCZJkkQp4jJAzczMFMz+QUAtZCHrSSFCQJqZmQH2VkJA7cROnMmGQkABAABw2a5CQM3MzIRPw0JAbtu2TX7bQkAzMzOzte9CQM7MzEwBujJAZ2ZmDhXjMkAAAADQ7P9BQAAAAMjFI0JAzczMHMdVQkAzMzN7EIdCQFVVVQXvrkJAv4T28i7EQkBmZma+HNxCQAAAAEBR8EJAAAAAAAc3MUDNzMzUtEExQLroolvakUBAzczMLOCZQEAAAABwKK5AQJqZmTH3wEBAmpmZKTM2QUBmZmbWODpBQOh5nqdSQEFAnud5Hs9EQUCZmZlhudsyQGZmZg5gBTNAMzMzK8wHQkAAAAAovzBCQAAAANANZ0JAmpmZmRydQkAhhBBimc9CQLETOxEE5UJAzczMrF7+QkDNzMwcfRBDQJqZmUkfGjFAmpmZUfYgMUAAAADsM/c+QGZmZq4f+z5AMzMzu68KP0CamZl52Rs/QFVVVVkUE0FAAAAA+N4UQUCKndhZSBdBQGZmZrZyGkFAmpmZsbIYMUAAAACQJCQxQNu2bato9T5AmpmZyab3PkAzMzMzvwk/QAEAACiSGT9AzczMVAATQUAWspAl1xVBQAAAAEjZF0FAZmZmBvcZQUAAAABYmKM1QDMzM1MszTVAJrSXEBnQREDNzMykfv1EQDMzM2MrOUVAmpmZobRwRUCuR+FaW5NFQK5H4dqQqEVAAAAArPfBRUA8Ctcj5tZFQFZVVcth7zNAZmZmdqT6M0C0l9B+XSRDQAAAAJDnLkNAzczMxAZGQ0AyMzNTcVlDQDMzM9P78ENAMzMzK3HzQ0BmZmb2L/pDQDMzMzNr/kNAAQAAUPaxNUDzGsoLE9w1QGZmZv7G4URAzczMnPINRUBmZmae1EhFQGZmZn4LgUVAmpmZibKiRUBmZmZmz7lFQMMwDENv0kVAYid2AtXoRUDOzMycrbI1QM7MzKwI3DVAAAAAkFjgREDNzMxEzwxFQBSuR2E9SUVAMzMztwKBRUCamZm5FKNFQPYoXO9euUVAIAtZCC7SRUDNzMyM5uhFQDE1sP9k7TNAZmZmhjL0M0CMLro4e4pCQFVVVe1JjUJAq6qqxtSUQkAAAABgqqJCQC+66BLr60NARhdd9JPwQ0CamZkZefRDQG7btg1h+ENAAQAAKNLCNUCbmZlRD/E1QGZmZiZa6ERAWO5p5EQVRUAzMzN7hVFFQEmSJKkejEVAmpmZeTS0RUAzMzMDu8tFQLKQhSwe50VAAAAAwA/+RUABAADISfczQGZmZoZFADRAMzMzo5QnQ0CamZnxkTNDQMdxHGc1SkNAc9FFl6xgQ0CamZkJ4vZDQAAAAODe+kNAMzMz28cAREBmZmbuSAVEQGVmZt6f9zNAe57nKbMANEChDuqAyilDQNiJnfgoNENAz/M8D5BJQ0BmZmaGIWJDQLETO5Eu90NAm5mZAZL6Q0AzMzNLLwBEQGZmZs6MBERAZmZmNtblNUBnZmbOJRU2QDMzM6un70RA8vDw8OEfRUA9z/OcKWRFQIwuumjto0VAmpmZSevURUBmZmZmvO1FQOmii/5mCUZAzszMjMUgRkA=" }, "type": "scatter3d" }, { "x": [ 120, 123, 126, 129, 132, 135, 138, 141, 144, 147, 150, 153, 156, 159, 162, 165, 168, 171, 174, 177, 180, 183, 186, 189, 192, 195, 198, 201, 204, 207, 210, 213, 216, 219 ], "y": [ 100, 116, 132, 148, 164, 180, 196, 212, 228, 244 ], "z": [ [ 11.698661890896885, 12.758872382494868, 11.58137863972148, 15.543074162801108, 15.537607510884603, 14.425016069412232, 15.613065866323618, 14.431465530395508, 14.428516817092897, 15.670553490922256, 14.46108331680298, 15.816932773590088, 15.817180824279784, 14.338764858245847, 18.587853940327964, 17.184556674957275, 17.178291416168214, 18.6582670211792, 17.17943048477173, 18.726319980621337, 18.726582336425786, 17.214950561523438, 18.85829744338989, 17.102039909362794, 17.09647665023804, 21.63904333114624, 19.93508597215017, 21.69516468048096, 21.697961616516118, 19.92732236911724, 21.76101922988892, 19.96596956253052, 19.96728315353393, 21.89779987335205 ], [ 11.735773616366917, 12.88172176328756, 11.61078395843506, 15.656464099884031, 15.65743995848156, 14.460487991571426, 15.731518563770113, 14.459450978499191, 14.459641599655152, 15.810247945785523, 14.494963216781615, 15.964699157448702, 15.963623046875, 14.36046085357666, 18.72724606440617, 17.220887851715087, 17.21842555999756, 18.793586067531415, 17.202979882558186, 18.88344219752721, 18.8870400428772, 17.25666551589966, 19.020996952056883, 17.12875852584839, 17.141182899475098, 21.801457595825195, 19.97907199859619, 21.85966561969958, 21.85950736999512, 19.95389595031738, 21.941639995574956, 20.00106086730957, 20.00273382096064, 22.082608127593996 ], [ 22.611633491516116, 24.402303886413574, 21.003065395355225, 29.953474631676308, 29.958504486083985, 27.76287708860455, 30.099179701371625, 27.02176448277065, 27.02008647918701, 30.174043141878567, 27.85156164169312, 30.24799172774605, 30.24329243066176, 25.98147658263745, 35.76779556274414, 33.02664239065988, 33.022860033758754, 35.93281802615604, 32.07505960175485, 35.990603065490724, 35.99941444396973, 33.139476255937055, 36.06091823577881, 30.965636014938354, 30.958628382001603, 41.6257649174443, 38.2841032522696, 41.76388530731201, 41.752702713012695, 37.08188542452726, 41.815251159667966, 38.30922355651855, 38.326492418561664, 41.872304344177245 ], [ 22.65601957411993, 24.60709114074707, 21.02368238495617, 30.205891132354736, 30.198633152505625, 27.86607179641724, 30.349782371520995, 27.041428919799205, 27.048065662384037, 30.403345108032227, 27.924060344696045, 30.485820865631105, 30.485678482055665, 26.01229429244995, 36.04140663146973, 33.09280166625977, 33.11596389770508, 36.21639823913574, 32.11297791579674, 36.26006831293521, 36.279473304748535, 33.20215377807617, 36.38083362579346, 30.980952167510985, 30.967388725280763, 41.98042736053467, 38.36644172668457, 42.10896644592285, 42.100075340271, 37.103818575541176, 42.1661649243585, 38.40289134979248, 38.40750034038837, 42.2490826775046 ], [ 22.766465759277345, 24.88891038894653, 21.096583938598634, 30.511622428894043, 30.51856478522805, 27.96104923884074, 30.65497589111328, 27.114097595214844, 27.111829376220705, 30.71520697552225, 28.07633600234985, 30.846758365631104, 30.832560506360284, 26.066932964324952, 36.43573703765869, 33.26611385345459, 33.25678180512928, 36.61108798980713, 32.15898094177246, 36.679382514953616, 36.670138931274415, 33.36060905456543, 36.80510902404785, 31.04174394607544, 31.03807373046875, 42.4466365814209, 38.547081565856935, 42.56898860931396, 42.57218566894531, 37.16274340947469, 42.636886024475096, 38.579754723442925, 38.574708847772506, 42.78251993088495 ], [ 22.905080032348632, 25.162594985961917, 21.16173610687256, 30.79869451522827, 30.799192047119146, 28.12142095565796, 30.93711757659912, 27.177916717529296, 27.201388835906982, 31.01186237335205, 28.20213931944312, 31.19628973007202, 31.18994581131708, 26.145001215477517, 36.79433488845825, 33.41638137817383, 33.41474361419678, 36.96898918151855, 32.2610188293457, 37.05302766653208, 37.05519046783447, 33.50754375457764, 37.22743530273438, 31.10878715515137, 31.09988641738892, 42.880512428283694, 38.69877090454101, 43.00816326141357, 43.007895374298094, 37.27082443237305, 43.09468569074358, 38.75526705655184, 38.76664810180664, 43.280682650479406 ], [ 23.400910801357693, 25.46028020430584, 23.09901094436645, 31.008107089996336, 31.012985515594483, 28.84479179382324, 31.157018661499023, 28.84237289428711, 28.850566482543947, 31.29926398306182, 28.91199487255465, 31.563632716303285, 31.537589116529983, 28.623641055563223, 37.07711115750399, 34.36031703948974, 34.36035346984863, 37.21862716674805, 34.394581567673455, 37.36601066589356, 37.36666933695475, 34.42343635559082, 37.62186837965442, 34.1490585009257, 34.148447608947755, 43.15122543334961, 39.88268508911133, 43.271073532104495, 43.27406997680664, 39.84311138499867, 43.40785140991211, 39.92877311706543, 39.93110862145057, 43.66343040466309 ], [ 23.419047636144303, 25.581143856048584, 23.11239051818848, 31.132878398895265, 31.14119171142578, 28.879695347377236, 31.282241439819337, 28.87270278930664, 28.890185642242432, 31.4397554397583, 28.942095851898195, 31.698864618937176, 31.70595302581787, 28.63512654458323, 37.216943359375, 34.39454483032227, 34.39534409840902, 37.377391317616336, 34.37909774780273, 37.52586421966553, 37.53268277203596, 34.45485954284668, 37.78918662438026, 34.16305446624756, 34.17062825741975, 43.316920623779296, 39.90189113616943, 43.45164184570312, 43.4482096862793, 39.87951521439986, 43.5916446685791, 39.95992660522461, 39.95758075714112, 43.85731201171875 ], [ 23.468284050623577, 25.715707111358643, 23.146460723876952, 31.264552116394043, 31.27087560193292, 28.92307996749878, 31.42712812423706, 28.91649608612061, 28.915033942774723, 31.59382518132528, 28.98924003014198, 31.873639869689946, 31.88081781487716, 28.677127091780957, 37.38107971918015, 34.435459966244906, 34.4398078918457, 37.54129467010498, 34.42533226013184, 37.71479197910854, 37.71962718963623, 34.502522423153835, 37.987264251708986, 34.18189547612117, 34.18631839752197, 43.51537084579468, 39.95458869934082, 43.64402044387091, 43.64202980373216, 39.90994567871094, 43.80560833474864, 40.00609912872314, 40.00144329071045, 44.07345563715155 ], [ 23.501793670654298, 25.85775365829468, 23.174048042297365, 31.36359270607553, 31.389599050794327, 28.95480493398813, 31.55859364961323, 28.941990470886232, 28.94783983230591, 31.74210081100464, 29.024507141113283, 32.01418037414551, 32.00207693680473, 28.693836784362794, 37.53025951385498, 34.47293399629139, 34.479400062561034, 37.69139153616769, 34.445538635253904, 37.87273254394531, 37.877479553222656, 34.53757077171689, 38.128818130493165, 34.20662574768066, 34.202851104736325, 43.67889831542968, 39.987646484375, 43.81900053757887, 43.81953582763672, 39.940461839948384, 43.98485565185547, 40.041288185119626, 40.03554706573486, 44.2560287475586 ] ], "type": "surface" } ], "layout": { "template": { "data": { "barpolar": [ { "marker": { "line": { "color": "white", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "barpolar" } ], "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "white", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "bar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "#C8D4E3", "linecolor": "#C8D4E3", "minorgridcolor": "#C8D4E3", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "#C8D4E3", "linecolor": "#C8D4E3", "minorgridcolor": "#C8D4E3", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "contour" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "heatmap" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "histogram2dcontour" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "histogram2d" } ], "histogram": [ { "marker": { "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "histogram" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scattermap": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermap" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatter": [ { "fillpattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 }, "type": "scatter" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ], "sequentialminus": [ [ 0.0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1.0, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "white", "showlakes": true, "showland": true, "subunitcolor": "#C8D4E3" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "white", "polar": { "angularaxis": { "gridcolor": "#EBF0F8", "linecolor": "#EBF0F8", "ticks": "" }, "bgcolor": "white", "radialaxis": { "gridcolor": "#EBF0F8", "linecolor": "#EBF0F8", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "white", "gridcolor": "#DFE8F3", "gridwidth": 2, "linecolor": "#EBF0F8", "showbackground": true, "ticks": "", "zerolinecolor": "#EBF0F8" }, "yaxis": { "backgroundcolor": "white", "gridcolor": "#DFE8F3", "gridwidth": 2, "linecolor": "#EBF0F8", "showbackground": true, "ticks": "", "zerolinecolor": "#EBF0F8" }, "zaxis": { "backgroundcolor": "white", "gridcolor": "#DFE8F3", "gridwidth": 2, "linecolor": "#EBF0F8", "showbackground": true, "ticks": "", "zerolinecolor": "#EBF0F8" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "#DFE8F3", "linecolor": "#A2B1C6", "ticks": "" }, "baxis": { "gridcolor": "#DFE8F3", "linecolor": "#A2B1C6", "ticks": "" }, "bgcolor": "white", "caxis": { "gridcolor": "#DFE8F3", "linecolor": "#A2B1C6", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "#EBF0F8", "linecolor": "#EBF0F8", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "#EBF0F8", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "#EBF0F8", "linecolor": "#EBF0F8", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "#EBF0F8", "zerolinewidth": 2 } } }, "scene": { "xaxis": { "title": { "text": "channels" } }, "yaxis": { "title": { "text": "filters" } }, "zaxis": { "title": { "text": "ms" } }, "camera": { "projection": { "type": "orthographic" } } }, "width": 2000, "height": 1000 }, "config": { "plotlyServerURL": "https://plot.ly" } } }, "metadata": {}, "output_type": "display_data" } ], "execution_count": 6 }, { "cell_type": "code", "id": "c9f108c1b000a586", "metadata": { "ExecuteTime": { "end_time": "2025-09-16T09:12:06.212734Z", "start_time": "2025-09-16T09:12:06.209648Z" } }, "source": [], "outputs": [], "execution_count": null }, { "cell_type": "code", "id": "b7f986b8-8b63-4ffc-886c-996b108e7b05", "metadata": { "ExecuteTime": { "end_time": "2025-09-16T09:13:39.517285Z", "start_time": "2025-09-16T09:13:39.465573Z" } }, "source": [ "fig = go.Figure()\n", "split_df = df.groupby('channels')\n", "first = True\n", "# deltas = []\n", "# approx = split_df.get_group(100)\n", "\n", "# lv = list(approx['ms'])[0]\n", "# for meas in list(approx['ms'])[1:]:\n", "# deltas.append((meas / lv))\n", "# lv = meas\n", "deltas = calculate_deltas(list(split_df.get_group(120)['ms']))\n", "for category, category_df in split_df:\n", " # print(category_df)\n", " # if not first:\n", " # continue\n", " upper_right = 195\n", " upper_left = 129\n", " lower_right = 192\n", " lower_left = 126\n", " # # upper_m, upper_b = lin_interpol( upper_sampled_channels[0], upper_sampled_channels[1], upper_sampled_channel_meas[0], upper_sampled_channel_meas[1])\n", "\n", " upper_right_meas = category_df.loc[category_df[\"filters\"] == upper_right][\"ms\"].values[0]\n", " upper_left_meas = category_df.loc[category_df[\"filters\"] == upper_left][\"ms\"].values[0]\n", "\n", " lower_right_meas = category_df.loc[category_df[\"filters\"] == lower_right][\"ms\"].values[0]\n", " lower_left_meas = category_df.loc[category_df[\"filters\"] == lower_left][\"ms\"].values[0]\n", "\n", " # print(upper_right_meas)\n", " # print(upper_left_meas)\n", "\n", " upper_m, upper_b = lin_interpol(upper_left - 3, upper_right - 3, upper_left_meas, upper_right_meas)\n", " lower_m, lower_b = lin_interpol(lower_left, lower_right, lower_left_meas, lower_right_meas)\n", " # print(list(category_df['channels']))\n", " # print(list(range(category_df['channels'][0], list(category_df['channels'])[-1])))\n", " start = list(category_df['filters'])[0]\n", " end = list(category_df['filters'])[-1]\n", " r_c = list(range(start, end))\n", "\n", " # r_v_upper = [calc_upper(c, upper_m, upper_b) for c in r_c]\n", " # r_v_lower = [calc_lower(c, lower_m, lower_b) for c in r_c]\n", "\n", " # fig.add_trace(go.Scatter(x=r_c, y=[c * upper_m + upper_b for c in r_c], name=\"Upper Sampled Channels\"))\n", " # fig.add_trace(go.Scatter(x=r_c, y=[c * lower_m + lower_b for c in r_c], name=\"Lower Sampled Channels\"))\n", " r_v_rect = [calc_rect(c, upper_m, upper_b, lower_m, lower_b) for c in r_c]\n", " lv = list(category_df['ms'])[0]\n", " delta_approx = [lv]\n", " for delta in deltas:\n", " lv = delta * lv\n", " delta_approx.append(lv)\n", " \n", " errs = [(1 - (g / m)) * 100 for g, m in zip(delta_approx, list(category_df['ms']))]\n", " all_errs = []\n", " all_errs.append(np.mean(np.abs(errs)))\n", "\n", " print(np.mean(np.abs(errs)))\n", " fig.add_trace(go.Scatter(\n", " # x=category_df['channels'],\n", " x=category_df['filters'],\n", " y=category_df['ms'],\n", " # mode='markers',\n", " marker=dict(size=7),\n", " name=f\"filter {category}\",\n", " mode='markers+lines',\n", " line=dict(\n", " dash='dash',\n", " width=.5\n", " )\n", " ))\n", " fig.add_trace(go.Scatter(\n", " x=list(category_df['filters']),\n", " y=delta_approx,\n", " name=f\"delta_approx {category}\",\n", " mode='lines',\n", " ))\n", " \n", " fig.add_trace(go.Scatter(\n", " x=list(category_df['filters']),\n", " y=errs,\n", " name=f\"delta_approx err {category}\",\n", " mode='lines',\n", " ))\n", "\n", " first = False\n", "print(f\"{np.mean(all_errs)=}\")\n", "\n", "fig.update_layout(\n", " scene=dict(\n", " xaxis_title='filters',\n", " yaxis_title='filters',\n", " zaxis_title='ms'\n", " ),\n", " width=PLOT_WIDTH,\n", " height=PLOT_HEIGHT,\n", " template='plotly_white',\n", ")\n", "fig.show()" ], "outputs": [ { "ename": "IndexError", "evalue": "index 0 is out of bounds for axis 0 with size 0", "output_type": "error", "traceback": [ "\u001B[31m---------------------------------------------------------------------------\u001B[39m", "\u001B[31mIndexError\u001B[39m Traceback (most recent call last)", "\u001B[36mCell\u001B[39m\u001B[36m \u001B[39m\u001B[32mIn[9]\u001B[39m\u001B[32m, line 22\u001B[39m\n\u001B[32m 19\u001B[39m lower_left = \u001B[32m126\u001B[39m\n\u001B[32m 20\u001B[39m \u001B[38;5;66;03m# # upper_m, upper_b = lin_interpol( upper_sampled_channels[0], upper_sampled_channels[1], upper_sampled_channel_meas[0], upper_sampled_channel_meas[1])\u001B[39;00m\n\u001B[32m---> \u001B[39m\u001B[32m22\u001B[39m upper_right_meas = \u001B[43mcategory_df\u001B[49m\u001B[43m.\u001B[49m\u001B[43mloc\u001B[49m\u001B[43m[\u001B[49m\u001B[43mcategory_df\u001B[49m\u001B[43m[\u001B[49m\u001B[33;43m\"\u001B[39;49m\u001B[33;43mfilters\u001B[39;49m\u001B[33;43m\"\u001B[39;49m\u001B[43m]\u001B[49m\u001B[43m \u001B[49m\u001B[43m==\u001B[49m\u001B[43m \u001B[49m\u001B[43mupper_right\u001B[49m\u001B[43m]\u001B[49m\u001B[43m[\u001B[49m\u001B[33;43m\"\u001B[39;49m\u001B[33;43mms\u001B[39;49m\u001B[33;43m\"\u001B[39;49m\u001B[43m]\u001B[49m\u001B[43m.\u001B[49m\u001B[43mvalues\u001B[49m\u001B[43m[\u001B[49m\u001B[32;43m0\u001B[39;49m\u001B[43m]\u001B[49m\n\u001B[32m 23\u001B[39m upper_left_meas = category_df.loc[category_df[\u001B[33m\"\u001B[39m\u001B[33mfilters\u001B[39m\u001B[33m\"\u001B[39m] == upper_left][\u001B[33m\"\u001B[39m\u001B[33mms\u001B[39m\u001B[33m\"\u001B[39m].values[\u001B[32m0\u001B[39m]\n\u001B[32m 25\u001B[39m lower_right_meas = category_df.loc[category_df[\u001B[33m\"\u001B[39m\u001B[33mfilters\u001B[39m\u001B[33m\"\u001B[39m] == lower_right][\u001B[33m\"\u001B[39m\u001B[33mms\u001B[39m\u001B[33m\"\u001B[39m].values[\u001B[32m0\u001B[39m]\n", "\u001B[31mIndexError\u001B[39m: index 0 is out of bounds for axis 0 with size 0" ] } ], "execution_count": 9 }, { "cell_type": "code", "execution_count": 12, "id": "c958d465066f3b1d", "metadata": { "ExecuteTime": { "end_time": "2025-09-16T09:12:06.508578156Z", "start_time": "2025-09-03T06:37:15.273866Z" } }, "outputs": [ { "data": { "application/vnd.plotly.v1+json": { "config": { "plotlyServerURL": "https://plot.ly" }, "data": [ { "name": "Input Measurements K1", "type": "scatter", "x": [ 10, 14, 18, 22, 26, 30, 34, 38, 42, 46, 50, 54, 58, 62, 66, 70, 74, 78, 82, 86, 90, 94, 98, 102, 106, 110, 114, 118, 122, 126, 130, 134, 138, 142, 146, 150, 154, 158, 162, 166, 170, 174, 178, 182, 186, 190, 194, 198, 202, 206, 210, 214, 218, 222, 226, 230, 234, 238, 242, 246, 250, 254, 258, 262, 266, 270, 274, 278, 282, 286, 290, 294, 298, 302, 306, 310, 314, 318, 322, 326, 330, 334, 338, 342, 346, 350, 354, 358, 362, 366, 370, 374, 378, 382, 386, 390, 394, 398, 402, 406, 410, 414, 418, 422, 426, 430, 434, 438, 442, 446, 450, 454, 458, 462, 466, 470, 474, 478, 482, 486, 490, 494, 498, 502, 506, 510 ], "y": [ 0.02654699197039008, 0.02760870403982699, 0.034266831997781994, 0.036467888781800864, 0.04791012768447399, 0.0483790555242449, 0.05754947169870138, 0.06463158435374498, 0.06789014436304569, 0.08130865098660191, 0.09125901322811841, 0.10658442655950785, 0.1103357706144452, 0.11449753595640262, 0.18063993608827392, 0.15080078392972548, 0.15865464014808336, 0.18553462406744559, 0.17979276795064408, 0.19694817066440978, 0.2743663410122196, 0.22510267728194594, 0.24376557325571777, 0.26311387739827236, 0.19725749860455594, 0.25838293868054946, 0.2726293279801806, 0.2778431250353654, 0.2946255735059579, 0.2724870720182856, 0.2813417758668462, 0.29765587211151917, 0.3070405492881934, 0.31140989367167154, 0.31806230423847837, 0.6367453816135724, 0.3159710187166929, 0.3169856585760911, 0.31246781355639297, 0.33990081580976644, 0.35020657059550286, 0.3536518770505985, 0.3699503734161456, 0.38591424556076526, 0.4009400799026092, 0.4153648588160674, 0.43064765886962414, 0.5295618516504764, 0.8763687314291795, 0.5746370984017849, 0.49751078920066355, 0.5170807889501253, 1.0281427726546923, 0.5865585647523404, 0.5725113221903642, 0.5926178238987923, 0.6124348109364509, 0.6314862880110741, 0.651493353655226, 0.6727246648589487, 0.6942874785736969, 0.7140145917435488, 0.7357547542636725, 0.7579701488614082, 0.7808440695405007, 0.8035670773983001, 0.8263149847836865, 0.8497248499892479, 0.8745064417615802, 0.8982366036409619, 0.9231537980662639, 0.9467520012575037, 0.971781161438808, 0.994630759639601, 1.0230188971967678, 1.0930961640570251, 1.1208728329271596, 1.1504676933471973, 1.1285990719473686, 1.78169785678716, 1.2341797498741536, 1.2656119989382255, 1.2966743450025062, 1.3563432898041765, 1.3862392019141805, 2.0890715854444752, 1.4194338436310108, 2.4936765137633716, 1.6745045317543878, 2.2984761452025086, 1.5460872906672805, 2.2241274135488185, 1.6164133895774093, 2.3159806226429187, 2.5439801080090865, 1.7182683722692946, 1.7517969287358797, 2.0227837349341167, 2.054808238546595, 2.616071677207947, 2.1324880003929136, 2.501734664042791, 2.3404150471758487, 3.0251013239224753, 2.0888208031654356, 2.702211691783025, 2.7522380685806276, 2.801659551160089, 2.207321224985896, 2.5162512063980103, 2.2902285563094273, 2.746128022670746, 3.064551263411727, 2.4113759756088258, 3.5181801837423574, 3.583802190693942, 3.282432193601485, 3.699681444601579, 2.9500656008720396, 2.6638719818808814, 2.7103805830984404, 2.7539647817611694, 2.801981073437315, 4.026393446055326, 2.891364777088165, 2.932752001285553 ] }, { "name": "Input Measurements K3", "type": "scatter", "x": [ 10, 14, 18, 22, 26, 30, 34, 38, 42, 46, 50, 54, 58, 62, 66, 70, 74, 78, 82, 86, 90, 94, 98, 102, 106, 110, 114, 118, 122, 126, 130, 134, 138, 142, 146, 150, 154, 158, 162, 166, 170, 174, 178, 182, 186, 190, 194, 198, 202, 206, 210, 214, 218, 222, 226, 230, 234, 238, 242, 246, 250, 254, 258, 262, 266, 270, 274, 278, 282, 286, 290, 294, 298, 302, 306, 310, 314, 318, 322, 326, 330, 334, 338, 342, 346, 350, 354, 358, 362, 366, 370, 374, 378, 382, 386, 390, 394, 398, 402, 406, 410, 414, 418, 422, 426, 430, 434, 438, 442, 446, 450, 454, 458, 462, 466, 470, 474, 478, 482, 486, 490, 494, 498, 502, 506, 510 ], "y": [ 0.04702004782917599, 0.05580062936867277, 0.07044550190245112, 0.07242701351021727, 0.10447446242968242, 0.10450055872028073, 0.17547445323566596, 0.17560575407991807, 0.17781782482564448, 0.27334440013269584, 0.2720691844920317, 0.27543645814061163, 0.35629544583459694, 0.33706941378613314, 0.4421884849568208, 0.46906267199416957, 0.5284091834177573, 0.4995053709248702, 0.6660279893974463, 0.5881014554003875, 0.5033288104782502, 0.6760269123514493, 0.7423526624639829, 0.7395696431895097, 0.7791570570766926, 0.7520288427869479, 0.7656626086831093, 0.7526600591937701, 0.8361257818440596, 0.8302700956364473, 0.8162112000485261, 0.8842238993048668, 0.9176673911909262, 0.9544485123554866, 0.9971365168988705, 1.0441537868181865, 1.0932001812855403, 1.059552465458711, 1.2054993072946867, 1.2389288956522941, 1.3899851517279942, 1.4454704162279766, 1.4896764089067778, 1.5786076370875042, 1.5594935626387596, 1.719045413672924, 1.6952477602561316, 1.8604637597203255, 1.797313882668813, 1.9204194991389911, 1.9535777391791345, 2.0117324867248536, 2.033846182902654, 2.229668885151545, 2.1683639986359102, 2.319943544745445, 2.4012135793368024, 2.4169269797761563, 2.49880554112728, 2.583168454090754, 2.6669488094647726, 2.7526283307870227, 2.837563017569029, 2.8486968811353046, 2.9322119634085837, 2.87682477106531, 3.3503061890290047, 3.202602196103898, 3.5370361316847254, 3.5579660156571613, 3.4872343251565554, 3.7640699903016843, 3.7490290290577097, 3.7580930026801855, 4.07267926678513, 4.170475223952649, 4.291050333414018, 4.391894925938974, 4.513698769652325, 4.610377811709879, 4.7315521909949485, 4.837215423583984, 4.466781996190548, 5.078364670276642, 5.187915169915487, 5.3116351278816785, 5.4413327287744595, 5.564409722644898, 5.675860496105049, 5.800509973005815, 5.933601490001089, 6.056584901279873, 6.192775011062622, 6.319004805882772, 6.457882427033924, 6.586781793205157, 6.722454404830932, 6.85417177802638, 6.578267577705888, 7.130236129760743, 6.8668581781716185, 7.207151772319406, 7.55736747317844, 7.247951030731201, 7.3856405258178714, 7.609989539436672, 7.6605178117752075, 7.44099586480742, 7.5773890885439785, 7.728105592727661, 8.229616950539981, 8.382600475760068, 8.531699180603027, 8.688118546097368, 8.426237525939941, 8.970995235443116, 9.124494361877442, 9.288636779785156, 8.999859561090885, 9.606110286712646, 9.761995124816895, 9.93540005683899, 10.083368301391602, 9.77674396832784, 10.412713670730591, 10.072904014587403 ] }, { "name": "Input Measurements K5", "type": "scatter", "x": [ 10, 14, 18, 22, 26, 30, 34, 38, 42, 46, 50, 54, 58, 62, 66, 70, 74, 78, 82, 86, 90, 94, 98, 102, 106, 110, 114, 118, 122, 126, 130, 134, 138, 142, 146, 150, 154, 158, 162, 166, 170, 174, 178, 182, 186, 190, 194, 198, 202, 206, 210, 214, 218, 222, 226, 230, 234, 238, 242, 246, 250, 254, 258, 262, 266, 270, 274, 278, 282, 286, 290, 294, 298, 302, 306, 310, 314, 318, 322, 326, 330, 334, 338, 342, 346, 350, 354, 358, 362, 366, 370, 374, 378, 382, 386, 390, 394, 398, 402, 406, 410, 414, 418, 422, 426, 430, 434, 438, 442, 446, 450, 454, 458, 462, 466, 470, 474, 478, 482, 486, 490, 494, 498, 502, 506, 510 ], "y": [ 0.0811014919107159, 0.10429600118969877, 0.10379515264059107, 0.14548232971131803, 0.2198840951770544, 0.2192417226905624, 0.2203121694624424, 0.3974469391057889, 0.3989891575674216, 0.3993085921456416, 0.6415766504804293, 0.6218035938640436, 0.7769173866560062, 0.7776190829078357, 0.7812717126508554, 0.8957269172569116, 1.0082479090491931, 0.9885272109905878, 1.1346949186722437, 1.1250087946256002, 1.1752326621115208, 1.2478989550173283, 1.2463255789279937, 1.2489876536329587, 1.2804769332408905, 1.2631780057946842, 1.4445744382540384, 1.425225386162599, 1.5478285236756006, 1.5615276537338894, 1.562653748889764, 1.7505908537705739, 1.928106410642465, 1.9388546457688014, 2.1204756418069204, 2.128881541450818, 2.303041387677193, 2.313310348391533, 2.5010146032969156, 2.6767361392974856, 2.6899664913018544, 2.8759312905073164, 3.0534685876766843, 3.0710087357759477, 3.257905093550682, 3.435463556130727, 3.4552373807430268, 3.6406081705490747, 3.8277806918621065, 4.004407339374224, 4.189194713513056, 4.214780386209488, 4.402867510080338, 4.59169921263059, 4.774288460991599, 4.96003907696406, 5.139949535528819, 5.326158712069193, 5.517425053755442, 5.7072021947159985, 5.8943066087158975, 6.083991205483152, 6.122079046436998, 6.464955914258957, 6.6542909213718975, 6.842818698327325, 7.037090709845225, 7.226437551498413, 7.418592155796208, 7.611222628575222, 7.801989348130996, 8.017097120824417, 8.213359070799532, 8.411001836995714, 8.744819972195236, 8.937087020874024, 9.143793428645415, 9.350627250561454, 9.549728234608969, 9.884594172100687, 10.079884803636663, 10.300307198968857, 10.639819163542528, 10.836924134093152, 11.059741140920904, 11.399072763396472, 11.600430897574485, 11.830736859204018, 12.161727174535974, 12.37513914975253, 12.729396136461107, 12.926379470825195, 13.285846405029297, 13.492925415039062, 13.719312054770333, 14.062261536856678, 14.430059839178014, 14.632792144525247, 15.00359853108724, 15.203518342971801, 15.56946234703064, 15.79965337117513, 16.151041269302368, 16.52069272994995, 16.737076323393296, 17.093907260894774, 17.463977527618407, 17.693728988235062, 18.047937574840727, 18.420939277200137, 18.644323569077713, 19.002624034881592, 19.377518463134766, 19.750137424468996, 20.122741426740372, 20.345252799987794, 20.708867263793945, 21.08267707824707, 21.468176078796386, 21.841455936431885, 22.21225776672363, 22.599798488616944, 22.969793796539307, 23.34430940945943, 23.722292995452882, 24.104726314544678 ] } ], "layout": { "autosize": false, "height": 1000, "template": { "data": { "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmap" } ], "histogram": [ { "marker": { "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "fillpattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermap": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermap" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "sequentialminus": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "radialaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "yaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "zaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "baxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "caxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 } } }, "width": 2000 } }, "image/png": "iVBORw0KGgoAAAANSUhEUgAACIMAAAPoCAYAAABHhawnAAAgAElEQVR4XuzdCbhd870+8G9GESIikpinoqWGarmqbVBarWsoRavELAgxNigxBRE1z6k5ptJLqxQtJWpIaSlXqdLemoeIJDLPOee/9tLkf0iOJlk5yTm/32c/T5+b4+y193o/79Knrfeu1aq+eIUXAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBAEgKtjEGS6FEIAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgEApYAziQiBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIJCRgDJJQmaIQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBIxBXAMECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgYQEjEESKlMUAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgIAxiGuAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIJCQgDFIQmWKQoAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAwBnENECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQSEjAGSahMUQgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECxiCuAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBAQgLGIAmVKQoBAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAwBjENUCAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQSEjAGCShMkUhQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBiDuAYIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgkJGIMkVKYoBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAFjENcAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQCAhAWOQhMoUhQABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBgDOIaIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgkJGAMklCZohAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIEjEFcAwQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgACBhASMQRIqUxQCBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAgDGIa4AAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgkJCAMUhCZYpCgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIEDAGcQ0QIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBBISMAZJqExRCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQLGIK4BAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgEBCAsYgCZUpCgECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIEDAGMQ1QIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBBISMAYJKEyRSFAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIGIO4BggQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECCQkYgyRUpigECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAWMQ1wABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAICEBY5CEyhSFAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIGAM4hogQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECCQkYAySUJmiECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgSMQVwDBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIGEBIxBEipTFAIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQICAMYhrgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECCQkIAxSEJlikKAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQMAZxDRAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIEEhIwBkmoTFEIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAsYgrgECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAQEICxiAJlSkKAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQMAYxDVAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIEEhIwBgkoTJFIUCAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgYg7gGCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIJCRiDJFSmKAQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABYxDXAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIEAgIQFjkITKFIUAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgYAziGiBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIJCRgDJJQmaIQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBIxBXAMECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgYQEjEESKlMUAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgIAxiGuAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIJCQgDFIQmWKQoAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAwBnENECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQSEjAGSahMUQgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECxiCuAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBAQgLGIAmVKQoBAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAwBjENUCAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQSEjAGCShMkUhQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBiDuAYIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgkJGIMkVKYoBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAFjENcAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQCAhAWOQhMoUhQABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBgDOIaIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgkJGAMklCZohAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIEjEFcAwQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgACBhASMQRIqUxQCBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAgDGIa4AAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgkJCAMUhCZYpCgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIEDAGcQ0QIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBBISMAZJqExRCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQLGIK4BAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgEBCAsYgCZUpCgECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIEDAGMQ1QIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBBISMAYJKEyRSFAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIGIO4BggQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECCQkYgyRUpigECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAWMQ1wABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAICEBY5CEyhSFAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIGAM4hogQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECCQkYAySUJmiECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgSMQVwDBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIGEBIxBEipTFAIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQICAMYhrgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECCQkIAxSEJlikKAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQMAZxDRAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIEEhIwBkmoTFEIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAsYgrgECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAQEICxiAJlSkKAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQMAYxDVAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIEEhIwBgkoTJFIUCAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgYg7gGCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIJCRiDJFSmKAQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABYxDXAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIEAgIQFjkITKFIUAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgYAziGiBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIJCRgDJJQmaIQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBIxBKl4D742aXPETHE6AAIH8BNq3ax2dOrSNUeOn5RdeYgIECCQo0GXp9jF52oyYMq0uwXQiESBAIC+BVq0iVuiyZLw/2v/ekVfz0hIgkKrA0ku2jdbFv7mPmzQ91YhyESBAICuBHl06xMixU2NmXX2zyr1S1yWb1fk4GQIEPhYwBql4JRiDVAR0OAECWQoYg2RZu9AECCQsYAyScLmiESCQnYAxSHaVC0yAQOICxiCJFyweAQLZCRiDZFe5wAQqCRiDVOKLMAapCOhwAgSyFDAGybJ2oQkQSFjAGCThckUjQCA7AWOQ7CoXmACBxAWMQRIvWDwCBLITMAbJrnKBCVQSMAapxGcMUpHP4QQIZCpgDJJp8WITIJCsgDFIstUKRoBAhgLGIBmWLjIBAkkLGIMkXa9wBAhkKGAMkmHpIhOoIGAMUgGvdqg7g1QEdDgBAlkKGINkWbvQBAgkLGAMknC5ohEgkJ2AMUh2lQtMgEDiAsYgiRcsHgEC2QkYg2RXucAEKgkYg1TiMwapyOdwAgQyFTAGybR4sQkQSFbAGCTZagUjQCBDAWOQDEsXmQCBpAWMQZKuVzgCBDIUMAbJsHSRCVQQMAapgFc71J1BKgI6nACBLAWMQbKsXWgCBBIWMAZJuFzRCBDITsAYJLvKBSZAIHEBY5DECxaPAIHsBIxBsqtcYAKVBIxBKvEZg1TkczgBApkKGINkWrzYBAgkK2AMkmy1ghEgkKGAMUiGpYtMgEDSAsYgSdcrHAECGQoYg2RYusgEKggYg1TAqx3qziAVAR1OgECWAsYgWdYuNAECCQsYgyRcrmgECGQnYAySXeUCEyCQuIAxSOIFi0eAQHYCxiDZVS4wgUoCxiAN+AbffE/c8euhMX36jPjaZhvEmccfEB2X7BB79jkzXvnnmxG1/0WkeC2zdMd4/O7Lyj8bg1S6/hxMgECmAsYgmRYvNgECyQoYgyRbrWAECGQoYAySYekiEyCQtIAxSNL1CkeAQIYCxiAZli4ygQoCxiD/xnvosWfjsut/GTdcdGIsvVSHOPKUy+IrG30+Dt/ve7HDPj+JS888MtZec+U5qI1BKlx9DiVAIFsBY5BsqxecAIFEBYxBEi1WLAIEshQwBsmydqEJEEhYwBgk4XJFI0AgSwFjkLRqP/Hsq2PN1VaMw/bdeaEHmzFzZvxu6J9jx29vMcdn9+o7MD4Y+VE8dPv5xb0QPr4ZQu11/yNPxwln/Syuu+D42GLTLy70c2ruH/jUs3+LNVdfMVbottw8nWrNeONtD4pH7rxo9jH3PjQsrhpyT9x6Rf9YfrnOUXvPJdfeFTfe8dt48p7Lo0vnTvP02QvrTcYg/5Z86dXXyzuCbLLBOuVfuenOB+Plf7wRP+1/aGz1/aPjF1efPtfijUEW1qXocwgQyEnAGCSntmUlQCAHAWOQHFqWkQCBXASMQXJpWk4CBHIRMAbJpWk5CRDIRcAYJK2mm3IM8vfiqRcXX3NnXHN+vznQamOQ9z8YFeef1ie+vOHH/2y89up78qVR+2fmg07qvVjGIHV19dG69f8fpyzqtmv5e/faMTZe/3Pz9NWfHoM8/dzLcdI518RNl54Uq63co/yMI/tfGl9Ye7X42S33lk8eMQaZJ9qmf9NhJ14U2/b8cuyx49axyXa9Y8vNN4rnXvxHLNdlmTjukB/EVltsXJ6EMUjTd+EbCBBIT8AYJL1OJSJAIG8BY5C8+5eeAIG0BIxB0upTGgIECBiDuAYIECCQloAxSFp9NhyD3HLXQ/Hqv96OadOmx1vvjYiZM+uKJ1f0jZVWWD422/7QOHSfnWPYMy/GiJFj4gc7fzP22+M78cLL/4qTB10b999ybgkz6+f/ufqM2Hm/k2PchImx0Xqfi+svOuETcLUxSO2OJO3btY1Tj923/N24CZPi+wedGqut1D16771jOQZ54+3hcfoFN8bI0WOj45Id4uSj9p59Y4V7HhwWVxcDhxkzZsaKPbrGucUNFlbsvly8O3xk/GTgNcUxY8oMe+y0dfl51952X7xX/O70H+9ffl/Dnzfb/rA4pBhhXH/7AzH0zouLjB/N9Xtf+b+3yrw9i39u/+wLr8a48RPjtOP2i5uLmzy8+c4HsdmXvjA7z2NPvVCOYabPmBGrrtQtzjrhoOjWddlozPmBoX+KK268O3os3yX69flhrL/uGnPN0RCy4Rhk3PhJcegJF8TlA4+ODT6/5uy31c65NgbZcJsDjEGay9++Vw35dfzlr/+Ia4tb4NRep553fXxry6/EN/5ro3jyz38tb49z702Dygu6rr6+uZy28yBAYBELLL5t4iIO6usINLFAw9vQNfFX+XgCBAgQIECAAAECBAgQIDCHQL3/jddVQSBbAf+EJ9vqW2zwWf9corldu60bPGqkOeM+90J9vP1e3SI/xa9s3DpWWWnOf6rUcAxy268ejiuH3B33DjmnfLzIgAuHROdllo5jeu8em+/QJ/b+/rfiqIN2iw9HjYnt9z4hflP8s+oRxZ/nNgapjUMe/MMz8cv7H2v0ziAH7rl9DLjopvIRJ23btIlfPfB41IYLtUHKYcXwpDYG2e3g02LPXbYpb57w4iuvl3e5+P0dF8SkyVNj692PKc51YDG06B5nXDCkeNxMlEOPsy+5pTz/2qNvxhcDk1PPu6EYYhwYd9wztNExyNd2OiJ2/e+e0e+wH5aPrWnse994Z3g5WLn5spPLUcrxZw2Of7z2TtTGL7X/PNdzlyPjgVt/Wn7GjvueFLdcfnKss+YqMeQXv4vnXvpHXHbWUfFZzjvv378819qdQRrL0WnpjrOvn1ljkNuvOjWOG3BVDOh3QHx9sw3men0Zgyzyv+3m/MLaRTLo8tvK5dDFA/oWC6cl5npWBx770/j+f29ZPmPp/VGTm8GZOwUCBBaHQHP7D1uLw2BBv9OdQRZUznEECBBongLuDNI8e3FWBAgQWBABdwZZEDXHECBAoPkKuDNI8+3GmTUPAf8Pf82jB2cx7wLdu3SIkWOnRu1xGs3ptWLXJZvT6TR6LtfdMjOefnbRj0EO6tUmttis9Rzn9ekxyFPP/i2uOOfo8n23/vL38bdX34hBJ/cuxyBDLvlJrLfO6uXv9jlyYPTabbtYobhxwYKOQY47dI+45tb7Yq9dt40tv7pxHPTj8+LIA79f3k2jNgZZY9UVYqf9Too/P3D17Ee3/ODQM+L4PnuWd+CYOGlKLNWxQ3k+9z/ydNz92yfiuuJGC1ff8pv447MvlcOOLxZ3yJj12JfPujPI13Y+Igafe1w5wqg9vqax712289Kx/zHnxrB7rii/97LrfxljxhV3B/n33U1qI5mLzjiiHIg8UJzT1ef9uHzfpMlT4qs7Hh7PP3RdOUppzLnhGKSxHA1LnDUGqQ1iJk+ZWtrU9gNzexmDNIN/izjvytvjg+K2M7Xb2LRr2+bfF8fU4oJ5O770xbVnn+G+R51TrK++Hd/ZejOPiWkGvTkFAgRanoAxSMvrzBkTIEDgswSMQVwfBAgQSEfAGCSdLiUhQIBATcAYxHVAgACBtAQ8JqZan839ziB/LR778tNTDi1D1u5gMevn2hjkV9efFSsXj4ypvQ478aLYtueXY921Vq00Bnlv+Kh4/OkX4sS+e0WvvmfHb287L/Y7elA5BunUqWP8qM+Z0aPbcrPRa4OH047dL7695ablXUyG/fnF8ndji0ekrFQ8Kqb2OJraQOLGO34b9z/8dIweMy4O2muH8pE2/2kMcvtVp8Xqq/SIl159vdHvXWv1FaPPTy6Oh39xYfm9VxaPdandpeT4w/csf95hn5+Ufs88/0p5fst27jT73CdMnBz33TyovGNKY84NxyCN5Wh4Bc4agww+99jo2qVzHFwMam4q7lqy7lqrzHGhGoNU+3u38tHP/O8rMfDSW+Ou6waUt8KZ9ao9H2nbPY4t7xTyjf/asHhMzItx/JmD477i9jpduyxjDFJZ3gcQIJCjgDFIjq3LTIBAygLGICm3KxsBArkJGIPk1ri8BAikLmAMknrD8hEgkJuAMUhajX/6ziCfNQa54aITizttrFEC7HX4WXFA8ZiXFbp3jRPP/ln5aJTaq3ZHjto/756Xx8TU7gzyhbVXj+/udXwc0munGDl6bPlImlljkDWL4cX3isem/On+wXOg1+4Ecs2tvykew9I/likem/Kbh/4Yv/7dk+UYpOGr9jSO/Y8ZFFeec0w8/dzL8dY7I+KMfvuXb7nk2rti7LgJ5aNlancGuWPwabHayj1i+IejG/3ef77+zjyNQV5/8/146LFn4vKBH99lpeGr4cim9tcb/txwDNJYjvXX/biD2mvWGKT2qJ0VitHM7b9+JG6+88HysTUNHydTe68xyBxVLNq/cNI518Z9D/8x2jQYgqy9xspx17UD4ok/vRjnD74jPiguvlVW7BYnHPGj2HyT9coTfM9jYhZtUb6NAIEkBIxBkqhRCAIECMwWMAZxMRAgQCAdAWOQdLqUhAABAjUBYxDXAQECBNISMAZJq8/5GYPs8t1vxElH7h1vvzcidjnglPjdz8+L+uJpQTvsc2I8cufF5SjjjAuGxDMvvFKOQYY++Vxc+/P74+dXnhKtav9Fr8GrV9+BURuDfHnDdaNfcROEv/z11eKRKv3KO1rMGoNssekXY/fep5ejkx22/Wpxl4/xMejyW2NAvwOKR8I8GcOeeTGuGnRscVeQiXHc6VfGxOJRLLVBR+3zvvedb0TPzTeMqdOmx+4HnxaD+h8Sb7w9PO749dC49Yr+MWXqtHLQUnsszKfHILXTbOx73x0+cp7GILVhRs3otiJ77W4jL77yejFYGRYnH9XrE+OP2nc1HIPsVpzrMb33KM+9sRwbFI++mfX69Bik9tdrx02ZMq0Yohz1CXdjkBb6964xSAstzmkTILBYBYxBFiu/LydAgMBCFzAGWeikPpAAAQKLTcAYZLHR+2ICBAg0iYAxSJOw+lACBAgsNgFjkMVG3yRfPD9jkEP32SnueXBYTJgwOQ7ee4f40S7blud0/lV3xKN/fL54hEy32GqLjYtxw+/Lx73U7vSx52EDYmZdXTx61yWfOP+GY5DasRdfc1fcO2Rg+Z6GY5DagOOMC4fE8BGjy2HD/j/4Tvzwe9uUw5DDT7q4uLPHxOLuJF3i2GJAceQpl8Wu2/csHl/zlTjzoptiTHHXj9bFMTtv97U44oBdY3IxkOjb/5IYM3ZCrFjc0eRza6wUH40dH2cef+An7gxSO4fGvnde7wxSG2w89tQLRa47y+HJUh07RP+je5Xjl8+6M8hVN90TQ37x2zj64N1io/XXnmuOhpBzG4NMKkYxezkbl/8AACAASURBVBxyRpH76/HDnb8ZW+9+THnI9Okzol27tuWfa4+5WX65zk1yTX36Q1vVF69F8k2JfokxSKLFikWAQJMKGIM0Ka8PJ0CAwCIXMAZZ5OS+kAABAk0mYAzSZLQ+mAABAotFwBhksbD7UgIECDSZgDFIk9E26w/efIc+xVjjnOjRrUuzPk8n1/wEjEEqdmIMUhHQ4QQIZClgDJJl7UITIJCwgDFIwuWKRoBAdgLGINlVLjABAokLGIMkXrB4BAhkJ2AMkl3lZeDaGOSe4s4dtcefeBGYHwFjkPnRmst7jUEqAjqcAIEsBYxBsqxdaAIEEhYwBkm4XNEIEMhOwBgku8oFJkAgcQFjkMQLFo8AgewEjEGyq7wMbAySZ+8LI7UxSEVFY5CKgA4nQCBLAWOQLGsXmgCBhAWMQRIuVzQCBLITMAbJrnKBCRBIXMAYJPGCxSNAIDsBY5DsKheYQCUBY5BKfBHGIBUBHU6AQJYCxiBZ1i40AQIJCxiDJFyuaAQIZCdgDJJd5QITIJC4gDFI4gWLR4BAdgLGINlVLjCBSgLGIJX4jEEq8jmcAIFMBYxBMi1ebAIEkhUwBkm2WsEIEMhQwBgkw9JFJkAgaQFjkKTrFY4AgQwFjEEyLF1kAhUEjEEq4NUOdWeQioAOJ0AgSwFjkCxrF5oAgYQFjEESLlc0AgSyEzAGya5ygQkQSFzAGCTxgsUjQCA7AWOQ7CoXmEAlAWOQSnzGIBX5HE6AQKYCxiCZFi82AQLJChiDJFutYAQIZChgDJJh6SITIJC0gDFI0vUKR4BAhgLGIBmWLjKBCgLGIBXwaoe6M0hFQIcTIJClgDFIlrULTYBAwgLGIAmXKxoBAtkJGINkV7nABAgkLmAMknjB4hEgkJ2AMUh2lQtMoJKAMUglPmOQinwOJ0AgUwFjkEyLF5sAgWQFjEGSrVYwAgQyFDAGybB0kQkQSFrAGCTpeoUjQCBDAWOQDEsXmUAFAWOQCni1Q90ZpCKgwwkQyFLAGCTL2oUmQCBhAWOQhMsVjQCB7ASMQbKrXGACBBIXMAZJvGDxCBDITsAYJK3KTzz76lhztRXjsH13XujBZsycGb8b+ufY8dtbzPHZvfoOjA9GfhQP3X5+tKr9l8B/v+5/5Ok44ayfxXUXHB9bbPrFhX5Ozf0Dn3r2b7Hm6ivGCt2Wm6dTrRlvvO1B8cidF80+5t6HhsVVQ+6JW6/oH8sv1zlqP19546/jo7Hj4wtrrxZnHn9grLHqCvP0+QvjTcYgFRWNQSoCOpwAgSwFjEGyrF1oAgQSFjAGSbhc0QgQyE7AGCS7ygUmQCBxAWOQxAsWjwCB7ASMQdKqvCnHIH//55tx8TV3xjXn95sDrTYGef+DUXH+aX3iyxuuM/v3fU++NF569fUYdFLvxTIGqaurj9at//84ZVG3Xcvfu9eOsfH6n5unr/70GOTp516Ok865Jm669KRYbeUe8dpb70evvmfHkEtOis+tvlJcfO2d8fKrb8QNF584T5+/MN5kDFJR0RikIqDDCRDIUsAYJMvahSZAIGEBY5CEyxWNAIHsBIxBsqtcYAIEEhcwBkm8YPEIEMhOwBgkrcobjkFuueuhePVfb8e0adPjrfdGxMyZdXHpmX1jpRWWj822PzQO3WfnGPbMizFi5Jj4wc7fjP32+E688PK/4uRB18b9t5xbwsz6+X+uPiN23u/kGDdhYmy03ufi+otO+ARcbQxSuyNJ+3Zt49Rj9y1/N27CpPj+QafGait1j95771iOQd54e3icfsGNMXL02Oi4ZIc4+ai9Y5MNPh6P3PPgsLj6lntjxoyZsWKPrnFu/0Njxe7LxbvDR8ZPBl5THDOmzLDHTluXn3ftbffFe8XvTv/x/uXxDX/ebPvD4pBihHH97Q/E0DsvLjJ+NNfvfeX/3irz9tx8o3j2hVdj3PiJcdpx+8XNdz4Yb77zQWz2pS/MzvPYUy+UY5jpM2bEqit1i7NOOCi6dV02GnN+YOif4oob744ey3eJfn1+GOuvu8ZcczSEbDgGGTd+Uhx6wgVx+cCjY4PPr1m+rWbx2pvvF+e7YfnzX4u+jjvjynj4fy5aZBeyMUhFamOQioAOJ0AgSwFjkCxrF5oAgYQFjEESLlc0AgSyEzAGya5ygQkQSFzAGCTxgsUjQCA7AWOQapVP/9NjMfPN/6v2IQtwdLvNt4o2q689x5ENxyC3/erhuHLI3XHvkHPKx4sMuHBIdF5m6Tim9+6x+Q59Yu/vfyuOOmi3+HDUmNh+7xPiNzcNihHFn+c2BqmNQx78wzPxy/sfa/TOIAfuuX0MuOim8hEnbdu0iV898HjUxha1QcphxfCkNgbZ7eDTYs9dtok9dtw6Xnzl9Tiy/6Xx+zsuiEmTp8bWux9TnOvAYmjRPc64YEjxuJkohx5nX3JLef61R9+MLwYmp553QzHEODDuuGdoo2OQr+10ROz63z2j32E/LB9b09j3vvHO8HKwcvNlJ5ejlOPPGhz/eO2dqI1f6uvro+cuR8YDt/60/Iwd9z0pbrn85FhnzVViyC9+F8+99I+47Kyj4rOcd96/f3mutTuDNJaj09IdZ/c4awxy+1WnxnEDrooB/Q6Ir2+2wVyvkJrFuVf8PDos0X72YGUBLqX5PsQYZL7JPnmAMUhFQIcTIJClgDFIlrULTYBAwgLGIAmXKxoBAtkJGINkV7nABAgkLmAMknjB4hEgkJ2AMUi1yiddfmZMe+Khah+yAEd37HtqtN/yO3Mc+ekxyFPP/i2uOOfo8n23/vL38bfikSKDTu5djkGGXPKTWG+d1cvf7XPkwOi123axQnEnjgUdgxx36B5xza33xV67bhtbfnXjOOjH58WRB36/vJtGbQyyxqorxE77nRR/fuDq2Y9u+cGhZ8TxffYs78AxcdKUWKpjh/J87n/k6bj7t0/EdRccX9wt5Dfxx2dfKocdXyzukDHrsS+fdWeQr+18RAw+97hyhFF7fE1j37ts56Vj/2POjWH3XFF+72XX/zLGjCvuDvLvu5vURjIXnXFEORB5oDinq8/7cfm+SZOnxFd3PDyef+i6cpTSmHPDMUhjORqWOGsMUhvETJ4ytbTZ8dtbzNHz+YPvKAcptQHLFcWdQ2o5FtXLGKSitDFIRUCHEyCQpYAxSJa1C02AQMICxiAJlysaAQLZCRiDZFe5wAQIJC5gDJJ4weIRIJCdgDFItcqb+51Bao8R+ekph5Yha3ewmPVzbQzyq+vPipWLR8bUXoedeFFs2/PLse5aq1Yag7w3fFQ8/vQLcWLfvaJX37Pjt7edF/sdPagcg3Tq1DF+1OfM6NFtudnotcHDacfuF9/ectPyLibD/vxi+buxxSNSVioeFVN7HE1tIHHjHb+N+x9+OkaPGRcH7bVD+Uib/zQGuf2q02L1VXrES6++3uj3rrX6itHnJxfHw7+4sPzeK4vHutTuUnL84XuWP++wz09Kv2eef6U8v2U7d5p97hMmTo77bh5U3jGlMeeGY5DGcjS8AmeNQQafe2x07dI5Di4GNTcVdy1Zd61V5rhQJ0+ZFr8ohij3PPhk2WXt7iWL4mUMUlHZGKQioMMJEMhSwBgky9qFJkAgYQFjkITLFY0AgewEjEGyq1xgAgQSFzAGSbxg8QgQyE7AGCStyj99Z5DPGoPccNGJxZ021igB9jr8rDigeMzLCt27xoln/6x8NErtVbsjx8BLb415eUxM7c4gX1h79fjuXsfHIb12ipGjx5aPpJk1BlmzGF58r3hsyp/uHzwHeu1OINfc+pviMSz9Y5nisSm/eeiP8evfPVmOQRq+3nzng+JOHoPiynOOiaefezneemdEnNFv//Itl1x7V4wdN6F8tEztziB3DD4tVlu5Rwz/cHSj3/vP19+ZpzHI62++Hw899kxcXtyF49OvhiOb2u8a/txwDNJYjvXX/biD2mvWGKT2qJ0VitHM7b9+JG6+88HysTW1x8nUHrszpsj41S+vX76/rq4+Nv7WgfHoXZeUj9JZFC9jkIrKxiAVAR1OgECWAsYgWdYuNAECCQsYgyRcrmgECGQnYAySXeUCEyCQuIAxSOIFi0eAQHYCxiBpVT4/Y5BdvvuNOOnIvePt90bELgecEr/7+XlRX1+7G8aJ8cidF5ejjDMuGBLPvPBKOQYZ+uRzce3P74+fX3nKHHeh6NV3YNTGIF/ecN3od+bg+MtfXy0eqdKvvKPFrDHIFpt+MXbvfXo5Otlh268Wd/kYH4MuvzUG9DugeCTMkzHsmRfjqkHHFncFmRjHnX5lTCwexVIbdNQ+73vf+Ub03HzDmDpteux+8GkxqP8h8cbbw+OOXw+NW6/oH1OmTisHLbXHwnx6DFJruLHvfXf4yHkag9SGGTWj24rstbuNvPjK68VgZVicfFSvT4w/at/VcAyyW3Gux/Teozz3xnJsUDz6Ztbr02OQ2l+vHTeluAvI5QOPKoxeilPPuz5uLu4WUnuUTG0wc9HV/xN/+OWlsx+f09RXtDFIRWFjkIqADidAIEsBY5AsaxeaAIGEBYxBEi5XNAIEshMwBsmucoEJEEhcwBgk8YLFI0AgOwFjkLQqn58xyKH77FQ8YmRYTJgwOQ7ee4f40S7blhjnX3VHPPrH54tHyHSLrbbYuBg3/L583EvtTh97HjYgZtbVlXeiaPhqOAapHXvxNXfFvUMGlm9pOAapDTjOuHBIDB8xuhyU7P+D78QPv7dNOQw5/KSLizt7TCzuTtIlji0GFEeeclnsun3P4vE1X4kzL7qpvCNG6+KYnbf7WhxxwK5Re0xK3/6XxJixE2LF4o4mn1tjpfho7Pg48/gDP3FnkNo5NPa983pnkNpg47GnXihy3VkOT5bq2CH6H92rHL981p1Brrrpnhjyi9/G0QfvFhutv/ZcczR0nNsYZFIxitnjkDOK3F+PWmc33PFA/Lx45M+ESVOKO590Lwc9m2ywziK7kI1BKlIbg1QEdDgBAlkKGINkWbvQBAgkLGAMknC5ohEgkJ2AMUh2lQtMgEDiAsYgiRcsHgEC2QkYg2RXeRl48x36FGONc6JHty55Aki9wALGIAtM9/GBxiAVAR1OgECWAsYgWdYuNAECCQsYgyRcrmgECGQnYAySXeUCEyCQuIAxSOIFi0eAQHYCxiDZVV4Gro1B7inu3FF7/IkXgfkRMAaZH625vNcYpCKgwwkQyFLAGCTL2oUmQCBhAWOQhMsVjQCB7ASMQbKrXGACBBIXMAZJvGDxCBDITqC5jUHenTEx7pn4Wpy91n9l18WiDGwMsii10/ouY5CKfRqDVAR0OAECWQoYg2RZu9AECCQsYAyScLmiESCQnYAxSHaVC0yAQOICxiCJFyweAQLZCTSnMcjQSe/EESMfj3F106L+K32y60JgAi1BwBikYkvGIBUBHU6AQJYCxiBZ1i40AQIJCxiDJFyuaAQIZCdgDJJd5QITIJC4gDFI4gWLR4BAdgLNZQzy04+ei8vG/rX0332pz8WdX9guuy4EJtASBIxBKrZkDFIR0OEECGQpYAySZe1CEyCQsIAxSMLlikaAQHYCxiDZVS4wAQKJCxiDJF6weAQIZCewuMcgH9VNjd4jHo2npgyPJVq1jjOW2zz27fT5WKnrktl1ITCBliBgDFKxJWOQioAOJ0AgSwFjkCxrF5oAgYQFjEESLlc0AgSyEzAGya5ygQkQSFzAGCTxgsUjQCA7gcU5Bnl+6shiCDI03p85KVZuu1Tc0G2b2GCJrmUHxiDZXYoCtxABY5CKRRmDVAR0OAECWQoYg2RZu9AECCQsYAyScLmiESCQnYAxSHaVC0yAQOICxiCJFyweAQLZCSyuMcj14/4eZ330TEyvr4ueHVaKa7pvHcu0bj/b3xgku0tR4BYiYAxSsShjkIqADidAIEsBY5AsaxeaAIGEBYxBEi5XNAIEshMwBsmucoEJEEhcwBgk8YLFI0AgO4FFPQaZVDcjjh31RNw38c1oXWgft+yX4pjiX60+JW8Mkt2lKHALETAGqViUMUhFQIcTIJClgDFIlrULTYBAwgLGIAmXKxoBAtkJGINkV7nABAgkLmAMknjB4hEgkJ3AohyDvDZ9XOw74uF4vfi/y7ZeIn7WbavoueRKczU3BsnuUhS4hQgYg1QsyhikIqDDCRDIUsAYJMvahSZAIGEBY5CEyxWNAIHsBIxBsqtcYAIEEhcwBkm8YPEIEMhOYFGNQe6b+EZxR5Ano3ZnkA3ad40hPbaNFdt0bNTbGGTBLsUTz7461lxtxThs350X7AM+46gZM2fG74b+OXb89hZzvKtX34HxwciP4qHbz49Wtf8S+O/X/Y88HSec9bO47oLjY4tNv7jQz6m5f+BTz/4t1lx9xVih23LzdKo14423PSgeufOi2cfc+9CwuGrIPXHrFf1jmaU7xibb9Y527drO/rxtvr5JXHTGEfP0+QvjTcYgFRWNQSoCOpwAgSwFjEGyrF1oAgQSFjAGSbhc0QgQyE7AGCS7ygUmQCBxAWOQxAsWjwCB7ASaegwyo74uBnz0TNww7u+l7f6dvhCnL/df0b5V7SExjb+MQRbsUmzKMcjf//lmXHzNnXHN+f3mOLnaGOT9D0bF+af1iS9vuM7s3/c9+dJ46dXXY9BJvRfLGKSurj5at/70Q4gWzHZBjqrl791rx9h4/c/N0+GfHoM8/dzLcdI518RNl54Uq63cI0aOHhvfO6B/DLvninn6vKZ4kzFIRVVjkIqADidAIEsBY5AsaxeaAIGEBYxBEi5XNAIEshMwBsmucoEJEEhcwBgk8YLFI0AgO4GmHIO8P3NS9P5gaDw/bWR0aNUmLl2+Z+y41BrzZGwMMk9Mc7yp4Rjklrseilf/9XZMmzY93npvRMycWReXntk3Vlph+dhs+0Pj0H12jmHPvBgjRo6JH+z8zdhvj+/ECy//K04edG3cf8u55WfP+vl/rj4jdt7v5Bg3YWJstN7n4vqLTvjEd9fGILU7krQv7lhx6rH7lr8bN2FSfP+gU2O1lbpH7713LMcgb7w9PE6/4MZy1NBxyQ5x8lF7xyYbfDweuefBYXH1LffGjBkzY8UeXePc/ofGit2Xi3eHj4yfDLymOGZMmWGPnbYuP+/a2+6L94rfnf7j/cvjG/682faHxSHFCOP62x+IoXdeXGT8aK7f+8r/vVXm7bn5RvHsC6/GuPET47Tj9oub73ww3nzng9jsS1+Yneexp14oxzDTZ8yIVVfqFmedcFB067psNOb8wNA/xRU33h09lu8S/fr8MNZfd4255mgI2XAMMm78pDj0hAvi8oFHxwafX7N82+tvvR99fnJx/O7n5y3YBbIQjjIGqYhoDFIR0OEECGQpYAySZe1CEyCQsIAxSMLlikaAQHYCxiDZVS4wAQKJCxiDJF6weAQIZCfQVGOQp6YMj4NHPBpj6qbGmu2WiRu7bxPrtFt2nn1byhjkV2Nei79OGjXPuRbWG7/fZa3YaMmuc3xcwzHIbb96OK4ccnfcO+ScWH65zjHgwiHReZml45jeu8fmO/SJvb//rTjqoN3iw1FjYvu9T4jf3DQoRhR/ntsYpDYOefAPz8Qv73+s0TuDHLjn9jHgopvKR5y0bdMmfvXA41EbW9QGKYcVw5PaGGS3g0+LPXfZJvbYcet48ZXX48j+l8bv77ggJk2eGlvvfkxxrgOLoUX3OOOCIcXjZqIcepx9yS3l+dcefTO+GJicet4NxRDjwLjjnqGNjkG+ttMRset/94x+h/2wfGxNY9/7xjvDy8HKzZedXI5Sjj9rcPzjtXeiNn6pr6+PnrscGQ/c+tPyM3bc96S45fKTY501V4khv/hdPPfSP+Kys46Kz3Leef/+5bnW7gzSWI5OxaNfZr1mjUFuv+rUOG7AVTGg3wHx9c02mP37vxZjnSNPuawc3vzz9Xfi82utWo5X1lh1hYV1af3HzzEG+Y9En/0GY5CKgA4nQCBLAWOQLGsXmgCBhAWMQRIuVzQCBLITMAbJrnKBCRBIXMAYJPGCxSNAIDuBhT0GqS8ELxvzQlww5vmoK/683ZKrxpXdtoqOrdvOl21LGYPs8/ojcevof8xXtoXx5lvW3DZ6LbfuHB/16THIU8/+La445+jyfbf+8vfxt1ffiEEn9y7HIEMu+Umst87q5e/2OXJg9Nptu1ihuBPHgo5Bjjt0j7jm1vtir123jS2/unEc9OPz4sgDv1/eTaM2BqkNFnba76T48wNXz350yw8OPSOO77NneQeOiZOmxFIdO5Tnc/8jT8fdv30irrvg+OJuIb+JPz77Ujns+GJxh4xZj335rDuDfG3nI2LwuceVI4za42sa+95lOy8d+x9z7uzHrlx2/S9jzLji7iD/vrtJbSRz0RlHlAORB4pzuvq8H5fnN2nylPjqjofH8w9dV45SGnNuOAZpLEfDEmeNQWqDmMlTppY2O357i9lv+dcb78bNxR1f9tr1W7Fm4Tn45nvj0WHPx69vPHthXFbz9BnGIPPE1PibjEEqAjqcAIEsBYxBsqxdaAIEEhYwBkm4XNEIEMhOwBgku8oFJkAgcQFjkMQLFo8AgewEFuYYZFzdtDhkxB/iiSnvRbtWraN/l02j9zLrL5BpSxmDNPc7g9TuJPHTUw4tO6jdwWLWz7UxyK+uPytWLh4ZU3sdduJFsW3PL8e6xZ0mqoxB3hs+Kh5/+oU4se9e0avv2fHb286L/Y4eVI5BOnXqGD/qc2b06Lbc7GuiNng47dj94ttbblrexWTYn18sfze2eETKSsWjYmqPo6kNJG6847dx/8NPx+gx4+KgvXYoH2nzn8Ygt191Wqy+So946dXXG/3etVZfsXzsysO/uLD83iuLx7rU7lJy/OF7lj/vsM9PSr9nnn+lPL9lO3eafe4TJk6O+24eVN4xpTHnhmOQxnI0/Btk1hhk8LnHRtcunePgYlBzU3HXknXXWmWufx/V3r/pdw6JB2+/oHDtskB/r83vQcYg8yv2qfcbg1QEdDgBAlkKGINkWbvQBAgkLGAMknC5ohEgkJ2AMUh2lQtMgEDiAsYgiRcsHgEC2QksrDHIS1NHxYEfDo13Z0yM7m2WjBu6bxubLPHx0GBBXi1lDLIg2ZrymE/fGeSzxiA3XHRicaeNNcrT2evws+KA4jEvK3TvGiee/bPy0Si1V+2OHAMvvTXm5TExtTuDfGHt1eO7ex0fh/TaKUaOHls+kmbWGGTNYnjxveKxKX+6f/AcBLU7gVxz62+Kx7D0j2WKx6b85qE/xq9/92Q5Bmn4evOdD4o7eQyKK885Jp5+7uV4650RcUa//cu3XHLtXTF23ITy0TK1O4PcMfi0WG3lHjH8w9GNfm/tUSvzMgZ5/c3346HHnonLB358l5WGr4Yjm9pfb/hzwzFIYznWX/fjDmqvWWOQ2qN2VihGM7f/+pG4+c4Hy8fW1B4nU3ukz9jiziVrr7ly+f7p02fEV757SDz2q0ujS4OhyhwnuRD/gjFIRUxjkIqADidAIEsBY5AsaxeaAIGEBYxBEi5XNAIEshMwBsmucoEJEEhcwBgk8YLFI0AgO4GFMQa5bfyrceroP8XU+rrYosMKcXXxWJiuxSCkyssYZMH05mcMsst3vxEnHbl3vP3eiNjlgFPidz8/L+qL5/zssM+J8cidF5ejjDMuGBLPvPBKOQYZ+uRzce3P74+fX3lKtKr9F70Gr159B0ZtDPLlDdeNfmcOjr/89dXikSr9yjtazBqDbLHpF2P33qeXo5Mdtv1qcZeP8THo8ltjQL8DikfCPBnDnnkxrhp0bHFXkIlx3OlXxsTiUSy1QUft8773nW9Ez803jKnTpsfuB58Wg/ofEm+8PTzu+PXQuPWK/jFl6rRy0FJ7LMynxyC102zse98dPnKexiC1YUbN6LYie+1uIy++8noxWBkWJx/V6xPjj9p3NRyD7Fac6zG99yjPvbEcGxSPvpn1+vQYpPbXa8dNmTKtGKIcFU/95W9xyk+vL0cztXMafNM98WThVnNaVC9jkIrSxiAVAR1OgECWAsYgWdYuNAECCQsYgyRcrmgECGQnYAySXeUCEyCQuIAxSOIFi0eAQHYCVcYgU+tnxo9HDou7J74WtWlA384bxQldNonW5U/VXsYgC+Y3P2OQQ/fZKe55cFhMmDA5Dt57h/jRLtuWX3r+VXfEo398vniETLfYaouNi3HD78vHvdTu9LHnYQNiZl1dPHrXJZ84wYZjkNqxF19zV9w7ZGD5noZjkNqA44wLh8TwEaPLQcn+P/hO/PB725TDkMNPuri868UK3bvEscWA4shTLotdt+9ZPL7mK3HmRTfFmOKuH62LY3be7mtxxAG7xuRiING3/yUxZuyEWLG4o8nn1lgpPho7Ps48/sBP3Bmkdg6Nfe+83hmkNth47KkXilx3lsOTpTp2iP5H9yrHL591Z5CrirHGkF/8No4+eLfYaP2155qjIeTcxiCTilHMHoecUeT+etQ6qz0y55ZfPlQORDZcb6047bj9Zj/uZ8Gumvk7yhhk/rzmeLcxSEVAhxMgkKWAMUiWtQtNgEDCAsYgCZcrGgEC2QkYg2RXucAECCQuYAySeMHiESCQncCCjkHemjE+DhwxNP4+7aNYpnX7uHL5LWObjqssND9jkIVGOdcP2nyHPsVY45zo0a1L036RT09OwBikYqXGIBUBHU6AQJYCxiBZ1i40AQIJCxiDJFyuaAQIZCdgDJJd5QITIJC4gDFI4gWLR4BAdgILMgYZOumd6PPhYzGhfnqs175L3NT9W7Fy26UWqp0xyELlnOPDamOQe4o7d9QeNeJFYH4EjEHmR2su7zUGqQjocAIEshQwBsmydqEJEEhYwBgk4XJFI0AgOwFjkOwqF5gAgcQFjEESL1g8AgSyE5ifMcjMqI9Bo/8Sg8e9VDr9qNM6MXC5r8YSoAkNXwAAIABJREFUrdosdDdjkIVO+okPNAZpWt+UP90YpGK7xiAVAR1OgECWAsYgWdYuNAECCQsYgyRcrmgECGQnYAySXeUCEyCQuIAxSOIFi0eAQHYC8zoGGTVzcvFYmEfj2akjivFH67hw+W/Erkut1WRexiBNRuuDCVQSMAapxBdhDFIR0OEECGQpYAySZe1CEyCQsIAxSMLlikaAQHYCxiDZVS4wAQKJCxiDJF6weAQIZCcwL2OQ2gCkdzEEGVEMQlZru3Tc0H2b4vEwTft4EWOQ7C5FgVuIgDFIxaKMQSoCOpwAgSwFjEGyrF1oAgQSFjAGSbhc0QgQyE7AGCS7ygUmQCBxAWOQxAsWjwCB7AT+0xjk6rEvxTkf/SVmFI+I2WbJVWJw961i6VbtmtzJGKTJiX0BgQUSMAZZILb/f5AxSEVAhxMgkKWAMUiWtQtNgEDCAsYgCZcrGgEC2QkYg2RXucAECCQuYAySeMHiESCQnUBjY5AJ9dPjyBGPx0OT34420SpO6LJJ9O280SLzMQZZZNS+iMB8CRiDzBfXnG82BqkI6HACBLIUMAbJsnahCRBIWMAYJOFyRSNAIDsBY5DsKheYAIHEBYxBEi9YPAIEshOY2xjkn9PHxL4fPBxvzZgQXdt0iKu7bR1bdFhhkdoYgyxSbl9GYJ4FjEHmmWrubzQGqQjocAIEshQwBsmydqEJEEhYwBgk4XJFI0AgOwFjkOwqF5gAgcQFjEESL1g8AgSyE/j0GOTuia9Fv5HDYkr9zNik/fJxQ/dtonvbjovcxRhkkZP7QgLzJGAMMk9Mjb/JGKQioMMJEMhSwBgky9qFJkAgYQFjkITLFY0AgewEjEGyq1xgAgQSFzAGSbxg8QgQyE5g1hhk8syZcdroP8Ut418tDXovs36c0mXTaNuq9WIxMQZZLOy+lMB/FDAG+Y9En/0GY5CKgA4nQCBLAWOQLGsXmgCBhAWMQRIuVzQCBLITMAbJrnKBCRBIXMAYJPGCxSNAIDuB2hjkf0eNjv2HPxIvTRsVHVu3jSuX3yq267jqYrUwBlms/L6cQKMCxiAVLw5jkIqADidAIEsBY5AsaxeaAIGEBYxBEi5XNAIEshMwBsmucoEJEEhcwBgk8YLFI0AgO4GX2oyMPV5/KMbVTYt12nUuHguzbazVbpnF7mAMstgrcAIE5ipgDFLxwjAGqQjocAIEshQwBsmydqEJEEhYwBgk4XJFI0AgOwFjkOwqF5gAgcQFjEESL1g8AgSyEagvkl445n/jkuJftT/vuNTqcUnXnrFkcWeQ5vAyBmkOLTgHAnMKGINUvCqMQSoCOpwAgSwFjEGyrF1oAgQSFjAGSbhc0QgQyE7AGCS7ygUmQCBxAWOQxAsWjwCBLAQ+qpsafUY8Fk9MeS/at2odA7r+V+y79BeaVXZjkGZVh5MhMFvAGKTixWAMUhHQ4QQIZClgDJJl7UITIJCwgDFIwuWKRoBAdgLGINlVLjABAokLGIMkXrB4BAgkL/DS1FGx/4hH4v2Zk2LFNh3j3rX/O1ad3ilm1tXuD9J8XsYgzacLZ0KgoYAxSMXrwRikIqDDCRDIUsAYJMvahSZAIGEBY5CEyxWNAIHsBIxBsqtcYAIEEhcwBkm8YPEIEEhaYMj4V2LA6D/HtPq66NlhpRjcfav4QtfOMXLsVGOQpJsXjsDCEzAGqWhpDFIR0OEECGQpYAySZe1CEyCQsIAxSMLlikaAQHYCxiDZVS4wAQKJCxiDJF6weAQIJCkwuW5GHDPqibhv4pvRukh4zLJfiuOKf7Uq/tyjSwdjkCRbF4pA0wgYg1R0NQapCOhwAgSyFDAGybJ2oQkQSFjAGCThckUjQCA7AWOQ7CoXmACBxAWMQRIvWDwCBJITeG36uDiweCzMP6ePjWVbLxE/67ZV9Fxypdk5jUGSq1wgAk0qYAxSkdcYpCKgwwkQyFLAGCTL2oUmQCBhAWOQhMsVjQCB7ASMQbKrXGACBBIXMAZJvGDxCBBISuChSW/HESMfi0nFnUE2aN81hvTYNlZs0/ETGY1BkqpcGAJNLmAMUpHYGKQioMMJEMhSwBgky9qFJkAgYQFjkITLFY0AgewEjEGyq1xgAgQSFzAGSbxg8QgQSEJgRn1dnP3Rs3HtuJfLPPt2+nwMWG7zaN+q9pCYT76MQZKoXAgCi0zAGKQitTFIRUCHEyCQpYAxSJa1C02AQMICxiAJlysaAQLZCRiDZFe5wAQIJC5gDJJ4weIRINDiBUbMmFQ8FmZoPD9tZHRo1SYuXb5n7LjUGo3mMgZp8ZULQGCRChiDVOQ2BqkI6HACBLIUMAbJsnahCRBIWMAYJOFyRSNAIDsBY5DsKheYAIHEBYxBEi9YPAIEWrTAU1OGx6Ef/iFGzZwSa7ZbJm7svk2s027Zz8xkDNKiK3fyBBa5gDFIRXJjkIqADidAIEsBY5AsaxeaAIGEBYxBEi5XNAIEshMwBsmucoEJEEhcwBgk8YLFI0CgxQpcMfavcd5Hz8fMqI/tllw1ruy2VXRs3fY/5jEG+Y9E3kCAQAMBY5CKl4MxSEVAhxMgkKWAMUiWtQtNgEDCAsYgCZcrGgEC2QkYg2RXucAECCQuYAySeMHiESDQ4gTG1U2LIz58PIZOfifaRqvo32XTOKTzF+c5hzHIPFN5IwEChYAxSMXLwBikIqDDCRDIUsAYJMvahSZAIGEBY5CEyxWNAIHsBIxBsqtcYAIEEhcwBkm8YPEIEGhRAn+fNjr2G/FIvDtjYnRvs2Rc2/2bsekS3ecrgzHIfHF5M4HsBYxBKl4CxiAVAR1OgECWAsYgWdYuNAECCQsYgyRcrmgECGQnYAySXeUCEyCQuIAxSOIFi0eAQIsRuHvia/HjkU/G1Pq6cgByQzEE6VoMQub3ZQwyv2LeTyBvAWOQiv0bg1QEdDgBAlkKGINkWbvQBAgkLGAMknC5ohEgkJ2AMUh2lQtMgEDiAsYgiRcsHgECzV5gav3M6D/66bh9/D+Lh8JEHN55wzixy5ejTfnT/L+MQebfzBEEchYwBqnYvjFIRUCHEyCQpYAxSJa1C02AQMICxiAJlysaAQLZCRiDZFe5wAQIJC5gDJJ4weIRINCsBWqPg9lvxMPx92kfxdKt2sXgblvFNh1XqXTOxiCV+BxMIDsBY5CKlRuDVAR0OAECWQoYg2RZu9AECCQsYAyScLmiESCQnYAxSHaVC0yAQOICxiCJFyweAQLNVmDopHfiiJGPx7i6abFe+y7FY2G2idXadqp8vsYglQl9AIGsBIxBKtZtDFIR0OEECGQpYAySZe1CEyCQsIAxSMLlikaAQHYCxiDZVS4wAQKJCxiDJF6weAQINDuBuqiP8z56Pq4Y+9fiTxG7LrVWXLj812OJVm0WyrkagywURh9CIBsBY5CKVRuDVAR0OAECWQoYg2RZu9AECCQsYAyScLmiESCQnYAxSHaVC0yAQOICxiCJFyweAQLNSmDUzMlx6IePxVNThkeHYvxx1nKbx16d1l2o52gMslA5fRiB5AWMQSpWbAxSEdDhBAhkKWAMkmXtQhMgkLCAMUjC5YpGgEB2AsYg2VUuMAECiQsYgyResHgECDQbgeenjowDRzwSI4pByMptl4qbum9bPB5muYV+fsYgC53UBxJIWsAYpGK9xiAVAR1OgECWAsYgWdYuNAECCQsYgyRcrmgECGQnYAySXeUCEyCQuIAxSOIFi0eAQLMQuHbcyzHwo2djen1dbLPkKnFlty1jmdbtm+TcjEGahNWHEkhWwBikYrXGIBUBHU6AQJYCxiBZ1i40AQIJCxiDJFyuaAQIZCdgDJJd5QITIJC4gDFI4gWLR4DAYhWYVDcjjigeC/PQ5LejTbSKfl02iaM6b9Sk52QM0qS8PpxAcgLGIBUrNQapCOhwAgSyFDAGybJ2oQkQSFjAGCThckUjQCA7AWOQ7CoXmACBxAWMQRIvWDwCBBabwD+nj4kDRgyN16ePi65tOsTV3baOLTqs0OTnYwzS5MS+gEBSAsYgFes0BqkI6HACBLIUMAbJsnahCRBIWMAYJOFyRSNAIDsBY5DsKheYAIHEBYxBEi9YPAIEFovAfRPfiKNHPhFT6mfGJu2Xjxu6bxPd23ZcJOdiDLJImH0JgWQEjEEqVmkMUhHQ4QQIZClgDJJl7UITIJCwgDFIwuWKRoBAdgLGINlVLjABAokLGIMkXrB4BAgsUoFp9XUxYPSfY8j4V8rvPXiZ9eLULptF21atF9l5GIMsMmpfRCAJAWOQijUag1QEdDgBAlkKGINkWbvQBAgkLGAMknC5ohEgkJ2AMUh2lQtMgEDiAsYgiRcsHgECi0zg/ZmTYv8PHomXpo2Kjq3bxpXLbxXbdVx1kX3/rC8yBlnk5L6QQIsWMAapWJ8xSEVAhxMgkKWAMUiWtQtNgEDCAsYgCZcrGgEC2QkYg2RXucAECCQuYAySeMHiESCwSASemjI8Dh7xaIypmxrrtOtcPBZm21ir3TKL5Ls//SXGIIuF3ZcSaLECxiAVqzMGqQjocAIEshQwBsmydqEJEEhYwBgk4XJFI0AgOwFjkOwqF5gAgcQFjEESL1g8AgSaVKC++PRLxvxvXFT8q674845LrR6XdO0ZSxZ3BllcL2OQxSXvewm0TAFjkIq9GYNUBHQ4AQJZChiDZFm70AQIJCxgDJJwuaIRIJCdgDFIdpULTIBA4gLGIIkXLB4BAk0mMK5uWhwy4g/xxJT3on2r1nFal83igGXWa7Lvm9cPNgaZVynvI0CgJmAMUvE6MAapCOhwAgSyFDAGybJ2oQkQSFjAGCThckUjQCA7AWOQ7CoXmACBxAWMQRIvWDwCBJpE4KWpo+LAD4fGuzMmxoptOsa13beJTZZYvkm+a34/1BhkfsW8n0DeAsYgFfs3BqkI6HACBLIUMAbJsnahCRBIWMAYJOFyRSNAIDsBY5DsKheYAIHEBYxBEi9YPAIEFrrALeNfjdNH/ymm1tfFFh1WKIYg34wurZdY6N+zoB9oDLKgco4jkKeAMUjF3o1BKgI6nACBLAWMQbKsXWgCBBIWMAZJuFzRCBDITsAYJLvKBSZAIHEBY5DECxaPAIGFJjC5bkYcP+qPcffE16JV8alHL7tx/HjZL0Xr8qfm8zIGaT5dOBMCLUHAGKRiS8YgFQEdToBAlgLGIFnWLjQBAgkLGIMkXK5oBAhkJ2AMkl3lAhMgkLiAMUjiBYtHgMBCEXhrxvjY94OH45/Tx8YyrdvHNd22jp5LrrRQPnthf4gxyMIW9XkE0hYwBqnYrzFIRUCHEyCQpYAxSJa1C02AQMICxiAJlysaAQLZCRiDZFe5wAQIJC5gDJJ4weIRIFBZ4KFJb8eRHz4eE+qnxwbtu8YN3beJldsuVflzm+oDjEGaStbnEkhTwBikYq/GIBUBHU6AQJYCxiBZ1i40AQIJCxiDJFyuaAQIZCdgDJJd5QITIJC4gDFI4gWLR4DAAgvMjPo4Z/Rf4mfjXio/Y5+l140zu3412rdqvcCfuSgONAZZFMq+g0A6AsYgFbs0BqkI6HACBLIUMAbJsnahCRBIWMAYJOFyRSNAIDsBY5DsKheYAIHEBYxBEi9YPAIEFkhgxIxJ0fvDP8SzU0dEh1Zt4oLlvx67LrXWAn3Woj7IGGRRi/s+Ai1bwBikYn/GIBUBHU6AQJYCxiBZ1i40AQIJCxiDJFyuaAQIZCdgDJJd5QITIJC4gDFI4gWLR4DAfAvUBiAHjhgao2ZOidXaLh039/hWrNNu2fn+nMV1gDHI4pL3vQRapoAxSMXejEEqAjqcAIEsBYxBsqxdaAIEEhYwBkm4XNEIEMhOwBgku8oFJkAgcQFjkMQLFo8AgfkSGFw8Eubc4tEwM4pHxGy35KpxefctY+lW7ebrMxb3m41BFncDvp9AyxIwBqnYlzFIRUCHEyCQpYAxSJa1C02AQMICxiAJlysaAQLZCRiDZFe5wAQIJC5gDJJ4weIRIDBPAhPqp0efEY/F0MnvRNtoFSct95U4bJkN5unY5vYmY5Dm1ojzIdC8BYxBKvZjDFIR0OEECGQpYAySZe1CEyCQsIAxSMLlikaAQHYCxiDZVS4wAQKJCxiDJF6weAQI/EeBf04fE/t+8HC8NWNCdG+zZFzb/Zux6RLd/+NxzfUNxiDNtRnnRaB5ChiDVOzFGKQioMMJEMhSwBgky9qFJkAgYQFjkITLFY0AgewEjEGyq1xgAgQSFzAGSbxg8QgQ+EyBuye+Fv1GDosp9TPLAcgNxRCkazEIackvY5CW3J5zJ7DoBYxBKpobg1QEdDgBAlkKGINkWbvQBAgkLGAMknC5ohEgkJ2AMUh2lQtMgEDiAsYgiRcsHgECcxWYVl8Xp456Om6d8I/y932KR8LUHg3TpnhETEt/GYO09AadP4FFK2AMUtHbGKQioMMJEMhSwBgky9qFJkAgYQFjkITLFY0AgewEjEGyq1xgAgQSFzAGSbxg8QgQmEPg3RkT48ARQ+OlaaNi6VbtYnC3rWKbjqskI2UMkkyVghBYJALGIBWZjUEqAjqcAIEsBYxBsqxdaAIEEhYwBkm4XNEIEMhOwBgku8oFJkAgcQFjkMQLFo8AgU8IPDH5vTjkwz/EuLppsV77LsVjYbaJ1dp2SkrJGCSpOoUh0OQCxiAViY1BKgI6nACBLAWMQbKsXWgCBBIWMAZJuFzRCBDITsAYJLvKBSZAIHEBY5DECxaPAIFSoC7q44Ix/xuXjXmh+FPErkutFRcu//VYolWb5ISMQZKrVCACTSpgDFKR1xikIqDDCRDIUsAYJMvahSZAIGEBY5CEyxWNAIHsBIxBsqtcYAIEEhcwBkm8YPEIEIiP6qZG7xGPxlNThhfjj9Zx1nKbx96dPp+sjDFIstUKRqBJBIxBKrIag1QEdDgBAlkKGINkWbvQBAgkLGAMknC5ohEgkJ2AMUh2lQtMgEDiAsYgiRcsHoHMBZ6fOrIYggyN92dOipXbLhU3dNsmNliia9IqxiBJ1yscgYUuYAxSkdQYpCKgwwkQyFLAGCTL2oUmQCBhAWOQhMsVjQCB7ASMQbKrXGACBBIXMAZJvGDxCGQscOO4v8eAj56J6fV10bPDSnFN961jmdbtkxcxBkm+YgEJLFQBY5CKnMYgFQEdToBAlgLGIFnWLjQBAgkLGIMkXK5oBAhkJ2AMkl3lAhMgkLiAMUjiBYtHIEOBSXUz4thRT8R9E9+M1kX+fstuEkctu3G0ysTCGCSTosUksJAEjEEqQhqDVAR0OAECWQoYg2RZu9AECCQsYAyScLmiESCQnYAxSHaVC0yAQOICxiCJFywegcwEXps+LvYd8XC8XvzfZVsvEdd1/2Zs0WGFrBSMQbKqW1gClQWMQSoSGoNUBHQ4AQJZChiDZFm70AQIJCxgDJJwuaIRIJCdgDFIdpULTIBA4gLGIIkXLB6BjATum/hGcUeQJ6N2Z5BN2i8f1/bYJlZs0zEjgY+jGoNkV7nABCoJGINU4oswBqkI6HACBLIUMAbJsnahCRBIWMAYJOFyRSNAIDsBY5DsKheYAIHEBYxBEi9YPAIZCMyor4uzPnomrhv39zLtgcusF6d32Szatqo9JCa/lzFIfp1LTKCKgDFIFb3iWGOQioAOJ0AgSwFjkCxrF5oAgYQFjEESLlc0AgSyEzAGya5ygQkQSFzAGCTxgsUjkLjABzMmxcEfPhrPTf0wOrZuGxd3/UbsuNQaiaf+7HjGIFnXLzyB+RYwBplvsk8eYAxSEdDhBAhkKWAMkmXtQhMgkLCAMUjC5YpGgEB2AsYg2VUuMAECiQsYgyResHgEEhZ4duqIOGDE0Bg9c0qs3rZT3NRj21in3bIJJ563aMYg8+bkXQQIfCxgDFLxSjAGqQjocAIEshQwBsmydqEJEEhYwBgk4XJFI0AgOwFjkOwqF5gAgcQFjEESL1g8AokK3Fg8EmZA8WiY6cUjYrZecuX4WbetolPr9ommnb9YxiDz5+XdBHIXMAapeAUYg1QEdDgBAlkKGINkWbvQBAgkLGAMknC5ohEgkJ2AMUh2lQtMgEDiAsYgiRcsHoHEBKbWz4xjRj4Z9058PVoV2Y5aduM4ftlNyj97fSxgDOJKIEBgfgSMQeZHay7vNQapCOhwAgSyFDAGybJ2oQkQSFjAGCThckUjQCA7AWOQ7CoXmACBxAWMQRIvWDwCCQm8M2NC+ViYl6eNjo6t28bg5beKb3VcNaGECyeKMcjCcfQpBHIRMAap2LQxSEVAhxMgkKWAMUiWtQtNgEDCAsYgCZcrGgEC2QkYg2RXucAECCQuYAySeMHiEUhE4A+T343DP3wsxtZNizXadYqbu38rPteucyLpFm4MY5CF6+nTCKQuYAxSsWFjkIqADidAIEsBY5AsaxeaAIGEBYxBEi5XNAIEshMwBsmucoEJEEhcwBgk8YLFI5CAwKVjXogLxjwfdUWWrZdcOX7Wbavo1Lp9AsmaJoIxSNO4+lQCqQoYg1Rs1hikIqDDCRDIUmCJdq1jqQ5tY/T4aVnmF5oAAQKpCRiDpNaoPAQI5CxgDJJz+7ITIJCigDFIiq3KRCANgfHFXUD6fvh4PDz5nTLQUZ03ihO6fDlapRGvyVIYgzQZrQ8mkKSAMUjFWo1BKgI6nACBLAWMQbKsXWgCBBIWMAZJuFzRCBDITsAYJLvKBSZAIHEBY5DECxaPQAsVeHX6R3HgiKHxxvTx0aFVm7i629bxrY6rttA0i/a0jUEWrbdvI9DSBYxBKjZoDFIR0OEECGQpYAySZe1CEyCQsIAxSMLlikaAQHYCxiDZVS4wAQKJCxiDJF6weARaoMADk96MI4s7gkypnxmrtF0qbu7xrfh8uy4tMMniOWVjkMXj7lsJtFQBY5CKzRmDVAR0OAECWQoYg2RZu9AECCQsYAyScLmiESCQnYAxSHaVC0yAQOICxiCJFywegRYkMDPqY+DoZ+PqcX8rz/rrHVaMa7tvHZ1bL9GCUiz+UzUGWfwdOAMCLUnAGKRiW8YgFQEdToBAlgLGIFnWLjQBAgkLGIMkXK5oBAhkJ2AMkl3lAhMgkLiAMUjiBYtHoIUIjJo5OQ758A/x9JQPyjPu23nDOKnLV1rI2Tev0zQGaV59OBsCzV3AGKRiQ8YgFQEdToBAlgLGIFnWLjQBAgkLGIMkXK5oBAhkJ2AMkl3lAhMgkLiAMUjiBYtHoAUIPDt1RPQe8WiMKAYhHVq1icu7bRn/3XH1FnDmzfMUjUGaZy/OikBzFTAGqdiMMUhFQIcTIJClgDFIlrULTYBAwgLGIAmXKxoBAtkJGINkV7nABAgkLmAMknjB4hFo5gJXjn0xzvnoL+VZrtp26bix+zaxXvvlmvlZN+/TMwZp3v04OwLNTcAYpGIjxiAVAR1OgECWAsYgWdYuNAECCQsYgyRcrmgECGQnYAySXeUCEyCQuIAxSOIFi0egmQqMq5sWR3z4eAyd/E55hjsutXpcuPw3YulW7ZrpGbec0zIGaTldOVMCzUHAGKRiC8YgFQEdToBAlgLGIFnWLjQBAgkLGIMkXK5oBAhkJ2AMkl3lAhMgkLiAMUjiBYtHoBkKvDR1VBz44dB4d8bEWKJV6zh9uf+K/Tp9oRmeacs8JWOQltmbsyawuASMQSrKG4NUBHQ4AQJZChiDZFm70AQIJCxgDJJwuaIRIJCdgDFIdpULTIBA4gLGIIkXLB6BZiYwZPwrMWD0n2NafV2sVjwW5tpu34wNlujazM6yZZ+OMUjL7s/ZE1jUAsYgFcWNQSoCOpwAgSwFjEGyrF1oAgQSFjAGSbhc0QgQyE7AGCS7ygUmQCBxAWOQxAsWj0AzEZhUNyOOHfVE3DfxzfKMPBam6YoxBmk6W59MIEUBY5CKrRqDVAR0OAECWQoYg2RZu9AECCQsYAyScLmiESCQnYAxSHaVC0yAQOICxiCJFywegWYg8M/pY+KAEf+PvTuBsvQsy4X9VHVVj9VDutPNlATISBjCTJApIXgU9biO+guICCghzIEfZw8qgoRBEASBACFgRI4jC3/HIwdDBjgiUyAkZGAIEAyk564eq7ur6t+1gSYJDendbw17P89Va/WiSfb77e++7i224XZ/l8ZNB8a7j4X5/c5jYX7ZY2HmrBljkDmjdWECKQWMQRprNQZpBHScAIGSAsYgJWsXmgCBxALGIInLFY0AgXICxiDlKheYAIHkAsYgyQsWj8ACC3xw91fi1zd/LPZNT3oszDx1YQwyT9DehkASAWOQxiKNQRoBHSdAoKSAMUjJ2oUmQCCxgDFI4nJFI0CgnIAxSLnKBSZAILmAMUjygsUjsEACE53xx8u2fjz+cucXu3fgsTDzV4QxyPxZeycCGQSMQRpbNAZpBHScAIGSAsYgJWsXmgCBxALGIInLFY0AgXICxiDlKheYAIHkAsYgyQsWj8ACCHz94M54VuexMNft3+axMAvgbwyyAOjeksAACxiDNJZnDNII6DgBAiUFjEFK1i40AQKJBYxBEpcrGgEC5QSMQcpVLjABAskFjEGSFywegXkW+NCem+P8TVfErukDHgszz/bffTtjkAWC97YEBlTAGKSxOGOQRkDHCRAoKWAMUrJ2oQkQSCxgDJK4XNEIECgnYAxSrnKBCRBILmAMkrxg8QjMk8DB6al45bZPxsXj13Xf0WNh5gn+MG9jDLJw9t6ZwCAKGIM0tmYM0gjoOAECJQWMQUrWLjQBAokFjEESlysaAQLlBIxBylUuMAECyQWMQZIXLB6BeRD45uSeOO/WS+Oq/Zs9FmYevO/sLYxB7kzI3ydA4LYCxiCNnwdjkEZAxwkQKClgDFKydqEJEEgsYAySuFzRCBAoJ2AMUq5ygQkQSC5gDJK8YPEIzLHApXu+EedvvjK2T014LMwcWx/p5Y1BjlTK6wgQmBE6z7zbAAAgAElEQVQwBmn8HBiDNAI6ToBASQFjkJK1C02AQGIBY5DE5YpGgEA5AWOQcpULTIBAcgFjkOQFi0dgjgQmYzpev+2qeOuOqzu/i/ixZcfHn254XIwNjc7RO7rskQoYgxyplNcRIDAjYAzS+DkwBmkEdJwAgZICxiAlaxeaAIHEAsYgicsVjQCBcgLGIOUqF5gAgeQCxiDJCxaPwBwIbDzYeSzMpsviUxMbY/HQcPz+MQ+PX1l1+hy8k0sejYAxyNGoOUOgroAxSGP3xiCNgI4TIFBSwBikZO1CEyCQWMAYJHG5ohEgUE7AGKRc5QITIJBcwBgkecHiEZhlgf/Y9614bmcIsmVyn8fCzLLtbF3OGGS2JF2HQA0BY5DGno1BGgEdJ0CgpIAxSMnahSZAILGAMUjickUjQKCcgDFIucoFJkAguYAxSPKCxSMwSwIzj4L5084jYd7QeTTMzCNiPBZmlmDn4DLGIHOA6pIEEgsYgzSWawzSCOg4AQIlBYxBStYuNAECiQWMQRKXKxoBAuUEjEHKVS4wAQLJBYxBkhcsHoFZENg2NRHP33h5XLnvFo+FmQXPub6EMchcC7s+gVwCxiCNfRqDNAI6ToBASQFjkJK1C02AQGIBY5DE5YpGgEA5AWOQcpULTIBAcgFjkOQFi0egUeCqic1x3sZL45uTezwWptFyvo4bg8yXtPchkEPAGKSxR2OQRkDHCRAoKWAMUrJ2oQkQSCxgDJK4XNEIECgnYAxSrnKBCRBILmAMkrxg8Qg0CLx7/Avxqm2figPTUx4L0+A430eNQeZb3PsRGGwBY5DG/oxBGgEdJ0CgpIAxSMnahSZAILGAMUjickUjQKCcgDFIucoFJkAguYAxSPKCxSNwFAK7pg/E+RuviA/tvbn7WJjfO+bh8axVpx/FlRxZCAFjkIVQ954EBlfAGKSxO2OQRkDHCRAoKWAMUrJ2oQkQSCxgDJK4XNEIECgnYAxSrnKBCRBILmAMkrxg8Qj0ILB36mC8b+cN8bbxa2Lz5N7uY2Heuf7sOGPJsT1cxUsXWsAYZKEb8P4EBkvAGKSxL2OQRkDHCRAoKWAMUrJ2oQkQSCxgDJK4XNEIECgnYAxSrnKBCRBILmAMkrxg8QgcgcC2yX3xjvFr45Lx62Nn51tBZn5+cvkJ8cfHPiZWDS8+git4ST8JGIP0UxvuhUD/CxiDNHZkDNII6DgBAiUFjEFK1i40AQKJBYxBEpcrGgEC5QSMQcpVLjABAskFjEGSFywegR8i8I2Du+JtOz4ff7PrS7FverL7yscuvXu8cPX947HL7s5uQAWMQQa0OLdNYIEEjEEa4Y1BGgEdJ0CgpIAxSMnahSZAILGAMUjickUjQKCcgDFIucoFJkAguYAxSPKCxSNwGIHr9m+Nt3RGIP+8+6sxGdOxKIbiJ1fcM16y+ow4ffFaZgMuYAwy4AW6fQLzLGAM0ghuDNII6DgBAiUFjEFK1i40AQKJBYxBEpcrGgEC5QSMQcpVLjABAskFjEGSFywegdsIfHTfLZ1vArkmrth7S/evLh1aFE8aOzletPoBcdzIGKskAsYgSYoUg8A8CRiDNEIbgzQCOk6AQEkBY5CStQtNgEBiAWOQxOWKRoBAOQFjkHKVC0yAQHIBY5DkBYtXXmC6I/BPnW8AeXvnm0Cu3r+l67F6eHE8Y+V94rxVp8e6RcvKG2UDMAbJ1qg8BOZWwBik0dcYpBHQcQIESgoYg5SsXWgCBBILGIMkLlc0AgTKCRiDlKtcYAIEkgsYgyQvWLyyAvunp+Jvdn0x3jF+Tdx0YGfX4a6d4cd5q+8XTx87LVYMj5a1yR7cGCR7w/IRmF0BY5DbeF745/9f/NXfXxoHDhyMRz38/vHK3/iVWL5saXz9vzbG/3zNRXHdF78W97jrsfHK33xWPOh+J3dPGoPM7gfS1QgQqCFgDFKjZykJEKgjYAxSp2tJCRDIL2AMkr9jCQkQqCVgDFKrb2lrCPz7npvj17b839g0ubcb+F6jK+NFqx4QT115ag2A4imNQYp/AMQn0KOAMch3wD50+afiLRd/IN7zxt+KsRVL4/zffUs89IzT4gXP/B/x9PMviEc//AFx7i/+VFz+H5+NV7/lL+Lf/vINMTqyyBikxw+clxMgQGBGwBjE54AAAQK5BIxBcvUpDQECtQWMQWr3Lz0BAvkEjEHydSpRbYHXbftMvGXH1V2EBy8+Nl645oz4ieUn1EYplt4YpFjh4hJoFDAG+Q7gNTfc1P1GkAff/5TuX7nkb/8tvnDjV+M3X/DUeOIv/kb8xz+9PUYWLer+vZ8/7+XxWy98ajz8QfcxBmn8ADpOgEBNAWOQmr1LTYBAXgFjkLzdSkaAQD0BY5B6nUtMgEBuAWOQ3P1KV0dgS+dbQJ618SPxqYmNMTY0GheuPyvOWX5cHQBJDwkYg/gwECDQi4AxyA/Qet5vvTGe8NiHxEn3vEe88o2XxN+/91WHXvnrr7wwznzI6fGk/362MUgvnzavJUCAwHcEjEF8FAgQIJBLwBgkV5/SECBQW8AYpHb/0hMgkE/AGCRfpxLVE5gZgJzXGYJs7AxCTl98TLxnwzlxwsjKehASdwWMQXwQCBDoRcAY5DBab/+zv49PX31jXPSG34iPf+baePNFH4i/fufLD73yZa99d5x60vHxzCf9eOzbP9mLt9cSIECAQEdgeHgoFnV+HTg4xYNADM38Nw5+CBAYaIHRRUMxOT0dU/5jfaB7dPMECBD4rsDMeHvigP9Q94kgQKCOwHTnz7JZf0Y6f1af+Tk4mTdj1u7kIjAj8MebPhsv/9YnYzKm4ylrTo53HndWLBn69rfY+6kpMPNn9f2df67eb/+ra+lin8uan0ip+13AGOQ2Dc38of81f/r++No3bo03veJFsXzZkrjqmi/G777u4vjn97320Ctf/HtviceeeUb3m0G2jE/0e8fujwABAn0nMPNfGs784XDn3oN9d29uiAABAgR6FxhbNhr7D0x2/2GEHwIECBAYbIGZne4xY0ti607/vGOwm3T3BAgQ+LbAzD9/Ge78h/ueCf8MxmeCwCAJjE/uj+d867L48J5vxNLO+ON16x8VT1t9yiBFcK9zJLBmbHGM7z4QU322Blm3askcJXZZAgRaBIxBbqP3R2/7y7h187Z47cueG6Mj316wbduxM370yb8WH/uHt8bSJYu7f+2nnv7b8Ye/+ax4yANO9ZiYlk+fswQIlBXwmJiy1QtOgEBSAY+JSVqsWAQIlBTwmJiStQtNgEBiAY+JSVyuaGkFrpnYEs/adGn818HdncfBjHUfC3P64rVp8wrWm4DHxPTm5dUEqgsYg3znE/DJz14fF7z5L+Lv3v2KGFl0+68yOvfX/igeesZpcd7T/nv822WfiDe/+wPxr+9/Xfd1t2zZW/0zJD8BAgR6FjAG6ZnMAQIECPS1gDFIX9fj5ggQINCTgDFIT1xeTIAAgb4XMAbp+4rcIIHbCfz5zhviD7b+Z0xMT8U5y46LCzecFWNDo5QIHBIwBvFhIECgFwFjkO9o/c6rL4p/+vD/jUW3GYKcfK97xN9d9Ir45q1b4rcueGdce8NX4/i7b4gLfvvZcb/T7tU9aQzSy8fNawkQIPBtAWMQnwQCBAjkEjAGydWnNAQI1BYwBqndv/QECOQTMAbJ16lEOQX2TB2Ml265Mv5p99diUQzFbx/zkHjB6gfkDCtVk4AxSBOfwwTKCRiDNFZuDNII6DgBAiUFjEFK1i40AQKJBYxBEpcrGgEC5QSMQcpVLjABAskFjEGSFyxeCoGvHBiPZ2z8cNzU+dd1i5Z2HwvzsCUbUmQTYvYFjEFm39QVCWQWMAZpbNcYpBHQcQIESgoYg5SsXWgCBBILGIMkLlc0AgTKCRiDlKtcYAIEkgsYgyQvWLyBF/in3V/tfCPIR2Pmm0FmBiAXrT87NowsH/hcAsydgDHI3Nm6MoGMAsYgja0agzQCOk6AQEkBY5CStQtNgEBiAWOQxOWKRoBAOQFjkHKVC0yAQHIBY5DkBYs30AL/c8t/xCU7b+hmeP6q+8fvrn3YQOdx8/MjYAwyP87ehUAWAWOQxiaNQRoBHSdAoKSAMUjJ2oUmQCCxgDFI4nJFI0CgnIAxSLnKBSZAILmAMUjygsUbSIGvH9wZ5228LK7ZvyXGhkbjwvVnxTnLjxvILG56/gWMQebf3DsSGGQBY5DG9oxBGgEdJ0CgpIAxSMnahSZAILGAMUjickUjQKCcgDFIucoFJkAguYAxSPKCxRs4gX/d8/X41c0fjfGp/XHfxWvj3esfH/ccXTlwOdzwwgkYgyycvXcmMIgCxiCNrRmDNAI6ToBASQFjkJK1C02AQGIBY5DE5YpGgEA5AWOQcpULTIBAcgFjkOQFizcwAvunp+JV2z4ZF49f173nn11xYvzxsY+OJUOLBiaDG+0PAWOQ/ujBXRAYFAFjkMamjEEaAR0nQKCkgDFIydqFJkAgsYAxSOJyRSNAoJyAMUi5ygUmQCC5gDFI8oLFGwiB/zq4O5618dLuY2GWdsYfF6x9ZPzCylMG4t7dZP8JGIP0XyfuiEA/CxiDNLZjDNII6DgBAiUFjEFK1i40AQKJBYxBEpcrGgEC5QSMQcpVLjABAskFjEGSFyxe3wt8aM/N8ZLNV3YfC3PCyFi8Z8M5cXrn8TB+CBytgDHI0co5R6CmgDFIY+/GII2AjhMgUFLAGKRk7UITIJBYwBgkcbmiESBQTsAYpFzlAhMgkFzAGCR5weL1rcDBzmNhLtj+6XjXjmu793jOsuPiwg1nxdjQaN/esxsbDAFjkMHoyV0S6BcBY5DGJoxBGgEdJ0CgpIAxSMnahSZAILGAMUjickUjQKCcgDFIucoFJkAguYAxSPKCxetLgZnHwjx340fiqv2bY1EMxW8f85B4weoH9OW9uqnBEzAGGbzO3DGBhRQwBmnUNwZpBHScAIGSAsYgJWsXmgCBxALGIInLFY0AgXICxiDlKheYAIHkAsYgyQsWr+8ELt3zjXjh5iu6j4VZt2hp97EwD1uyoe/u0w0NroAxyOB2584JLISAMUijujFII6DjBAiUFDAGKVm70AQIJBYwBklcrmgECJQTMAYpV7nABAgkFzAGSV6weH0jMBnT8Zqtn453jF/T+V10ByAXrT87Nows75t7dCM5BIxBcvQoBYH5EjAGaZQ2BmkEdJwAgZICxiAlaxeaAIHEAsYgicsVjQCBcgLGIOUqF5gAgeQCxiDJCxavLwS+ObknnrfxsvjUxMbu/Tx/1f3jd9Y+tPuIGD8EZlvAGGS2RV2PQG4BY5DGfo1BGgEdJ0CgpIAxSMnahSZAILGAMUjickUjQKCcgDFIucoFJkAguYAxSPKCxVtwgSv33hLP23R5bJ+aiLGh0bhw/VlxzvLjFvy+3EBeAWOQvN1KRmAuBIxBGlWNQRoBHSdAoKSAMUjJ2oUmQCCxgDFI4nJFI0CgnIAxSLnKBSZAILmAMUjygsVbMIGZx8K8fttV8dYdV3cfC3P64mPiPRvOiRNGVi7YPXnjGgLGIDV6lpLAbAkYgzRKGoM0AjpOgEBJAWOQkrULTYBAYgFjkMTlikaAQDkBY5BylQtMgEByAWOQ5AWLtyAC3+o8Fua5t3kszFNXnhJvWPfoBbkXb1pPwBikXucSE2gRMAZp0eucNQZpBHScAIGSAsYgJWsXmgCBxALGIInLFY0AgXICxiDlKheYAIHkAsYgyQsWb94FZh4L88LNV8SWyX2xdGhRvOHYR8fPrjhx3u/DG9YVMAap273kBI5GwBjkaNRuc8YYpBHQcQIESgoYg5SsXWgCBBILGIMkLlc0AgTKCRiDlKtcYAIEkgsYgyQvWLx5E5jqPAzmDds/G2/Z/rnuY2FOGV0dF214fOdf18zbPXgjAjMCxiA+BwQI9CJgDNKL1mFeawzSCOg4AQIlBYxBStYuNAECiQWMQRKXKxoBAuUEjEHKVS4wAQLJBYxBkhcs3rwIbDy4J17Q+TaQ/9j3re77zXwTyOvXPSqWDY/My/t7EwK3FTAG8XkgQKAXAWOQXrQO81pjkEZAxwkQKClgDFKydqEJEEgsYAySuFzRCBAoJ2AMUq5ygQkQSC5gDJK8YPHmXGBmAPLcTZd1HwszM/549doz48ljp8z5+3oDAj9IwBjEZ4MAgV4EjEF60TrMa41BGgEdJ0CgpIAxSMnahSZAILGAMUjickUjQKCcgDFIucoFJkAguYAxSPKCxZszgZnHwryx80iYN3ceDTPVeRePhZkzahfuUcAYpEcwLydQXMAYpPEDYAzSCOg4AQIlBYxBStYuNAECiQWMQRKXKxoBAuUEjEHKVS4wAQLJBYxBkhcs3pwIbJnc2/k2kMs9FmZOdF20VcAYpFXQeQK1BIxBGvs2BmkEdJwAgZICxiAlaxeaAIHEAsYgicsVjQCBcgLGIOUqF5gAgeQCxiDJCxZv1gVmHgvzgs4QZGNnEOKxMLPO64KzIGAMMguILkGgkIAxSGPZxiCNgI4TIFBSwBikZO1CEyCQWMAYJHG5ohEgUE7AGKRc5QITIJBcwBgkecHizZrAdOdKf9J5JMwbPRZm1kxdaG4EjEHmxtVVCWQVMAZpbNYYpBHQcQIESgoYg5SsXWgCBBILGIMkLlc0AgTKCRiDlKtcYAIEkgsYgyQvWLxZEZh5LMwLN10ZV+67pXu9n11xYrx+3aO63wzih0C/CRiD9Fsj7odAfwsYgzT2YwzSCOg4AQIlBYxBStYuNAECiQWMQRKXKxoBAuUEjEHKVS4wAQLJBYxBkhcsXrPAHR8Lc8HaM+MpY6c0X9cFCMyVgDHIXMm6LoGcAsYgjb0agzQCOk6AQEkBY5CStQtNgEBiAWOQxOWKRoBAOQFjkHKVC0yAQHIBY5DkBYt31AIzj4V5y/bPxR93HgszGdNxyujquGjD4zv/uuaor+kggfkQMAaZD2XvQSCPgDFIY5fGII2AjhMgUFLAGKRk7UITIJBYwBgkcbmiESBQTsAYpFzlAhMgkFzAGCR5weIdlYDHwhwVm0N9ImAM0idFuA0CAyJgDNJYlDFII6DjBAiUFDAGKVm70AQIJBYwBklcrmgECJQTMAYpV7nABAgkFzAGSV6weD0LfGpiY5y38SOxcXJvLBseCY+F6ZnQgQUWMAZZ4AK8PYEBEzAGaSzMGKQR0HECBEoKGIOUrF1oAgQSCxiDJC5XNAIEygkYg5SrXGACBJILGIMkL1i8IxaYeSzM23ZcHX+07SqPhTliNS/sRwFjkH5sxT0R6F8BY5DGboxBGgEdJ0CgpIAxSMnahSZAILGAMUjickUjQKCcgDFIucoFJkAguYAxSPKCxTsigW1TE/H8jZfHlftu6b7+Z1ecGK9f96juN4P4ITBoAsYgg9aY+yWwsALGII3+xiCNgI4TIFBSwBikZO1CEyCQWMAYJHG5ohEgUE7AGKRc5QITIJBcwBgkecHi3anAzGNhnrfxsvjm5B6PhblTLS8YBAFjkEFoyT0S6B8BY5DGLoxBGgEdJ0CgpIAxSMnahSZAILGAMUjickUjQKCcgDFIucoFJkAguYAxSPKCxfuhAheOXxOv3frpOBjTce/RVfHeDefEKaNrqBEYaAFjkIGuz80TmHcBY5BGcmOQRkDHCRAoKWAMUrJ2oQkQSCxgDJK4XNEIECgnYAxSrnKBCRBILmAMkrxg8Q4rMPNYmBdvujIu3fuN7t+feSzMH3UeC7PcY2F8YhIIGIMkKFEEAvMoYAzSiG0M0gjoOAECJQWMQUrWLjQBAokFjEESlysaAQLlBIxBylUuMAECyQWMQZIXLN73CVw1sTnO23hp97EwS4cWxQVrHxm/sPIUUgTSCBiDpKlSEALzImAM0shsDNII6DgBAiUFjEFK1i40AQKJBYxBEpcrGgEC5QSMQcpVLjABAskFjEGSFyze7QTeueOaeM32z8SB6SmPhfHZSCtgDJK2WsEIzImAMUgjqzFII6DjBAiUFDAGKVm70AQIJBYwBklcrmgECJQTMAYpV7nABAgkFzAGSV6weF2Bb3W+BeS12z4Tf7vrS91///MrTorXrPsRj4Xx+UgpYAySslahCMyZgDFII60xSCOg4wQIlBQwBilZu9AECCQWMAZJXK5oBAiUEzAGKVe5wAQIJBcwBklecPF41+3fGhfuuDY+sPvLXQmPhSn+gSgS3xikSNFiEpglAWOQRkhjkEZAxwkQKClgDFKydqEJEEgsYAySuFzRCBAoJ2AMUq5ygQkQSC5gDJK84KLx/m3P1+Pi8S/Ex/Z965DAz4+dFC9ZfUacOLq6qIrYVQSMQao0LSeB2REwBml0NAZpBHScAIGSAsYgJWsXmgCBxALGIInLFY0AgXICxiDlKheYAIHkAsYgyQsuFG9iejL+rvMYmIs6I5AvHtjRTb5meEn80spT49yVp8eGkeWFNEStLGAMUrl92Qn0LmAM0rvZ7U4YgzQCOk6AQEkBY5CStQtNgEBiAWOQxOWKRoBAOQFjkHKVC0yAQHIBY5DkBReIt21yX7x35/Vxyc4bYvPk3m7ie46sjGevum88deyUWDY8UkBBRALfEzAG8WkgQKAXAWOQXrQO81pjkEZAxwkQKClgDFKydqEJEEgsYAySuFzRCBAoJ2AMUq5ygQkQSC5gDJK84MTxbjowHu/YcU383e4vx77Ot4LM/Dx0yfp47qr7x0+sOCGGYyhxetEI/GABYxCfDgIEehEwBulF6zCvNQZpBHScAIGSAsYgJWsXmgCBxALGIInLFY0AgXICxiDlKheYAIHkAsYgyQtOGO9j+74Z7+w8CubSPTfHdCffos7oY2b88YLVZ8QDF69LmFgkAr0JGIP05uXVBKoLGIM0fgKMQRoBHSdAoKSAMUjJ2oUmQCCxgDFI4nJFI0CgnIAxSLnKBSZAILmAMUjyghPF+/rBnfHCTVfEZyY2dVMtHVoUT195WpzbeRzM8SNjiZKKQqBNwBikzc9pAtUEjEEaGzcGaQR0nACBkgLGICVrF5oAgcQCxiCJyxWNAIFyAsYg5SoXmACB5ALGIMkLThLvn3d/LX5t80dj5/SBuOuiZfHs1feLp42dGquGFydJKAaB2RMwBpk9S1ciUEHAGKSxZWOQRkDHCRAoKWAMUrJ2oQkQSCxgDJK4XNEIECgnYAxSrnKBCRBILmAMkrzgAY+3f3oq/mDrf8YlO2/oJnn00rvGO9afHWsXLR3wZG6fwNwJGIPMna0rE8goYAzS2KoxSCOg4wQIlBQwBilZu9AECCQWMAZJXK5oBAiUEzAGKVe5wAQIJBcwBkle8ADHm3kszHkbL4tr9m+JRTEUv7bmQfHiNQ/s/M4PAQI/TMAYxOeDAIFeBIxBetE6zGuNQRoBHSdAoKSAMUjJ2oUmQCCxgDFI4nJFI0CgnIAxSLnKBSZAILmAMUjyggc03j/t/mrnsTAfi12dx8LcpfNYmIs2nBMPXbJ+QNO4bQLzK2AMMr/e3o3AoAsYgzQ2aAzSCOg4AQIlBYxBStYuNAECiQWMQRKXKxoBAuUEjEHKVS4wAQLJBYxBkhc8YPHu+FiYs5bdPd6+/qxYM7xkwJK4XQILJ2AMsnD23pnAIAoYgzS2ZgzSCOg4AQIlBYxBStYuNAECiQWMQRKXKxoBAuUEjEHKVS4wAQLJBYxBkhc8QPFu+1iY0aHh+J01D4nnrr7/ACVwqwT6Q8AYpD96cBcEBkXAGKSxKWOQRkDHCRAoKWAMUrJ2oQkQSCxgDJK4XNEIECgnYAxSrnKBCRBILmAMkrzgAYl328fC3H3Rirh4w+PjjCXHDsjdu00C/SVgDNJffbgbAv0uYAzS2JAxSCOg4wQIlBQwBilZu9AECCQWMAZJXK5oBAiUEzAGKVe5wAQIJBcwBklecJ/Hm3kszCu2fiL+bOf13Tt9wvLj463HPjZWDS/u8zt3ewT6V8AYpH+7cWcE+lHAGKSxFWOQRkDHCRAoKWAMUrJ2oQkQSCxgDJK4XNEIECgnYAxSrnKBCRBILmAMkrzgPo5328fCLOk8Fub31z4ifnnlffr4jt0agcEQMAYZjJ7cJYF+ETAGaWzCGKQR0HECBEoKGIOUrF1oAgQSCxiDJC5XNAIEygkYg5SrXGACBJILGIMkL7hP4932sTD3Gl0Z71r/+Ljf4rV9erdui8BgCRiDDFZf7pbAQgsYgzQ2YAzSCOg4AQIlBYxBStYuNAECiQWMQRKXKxoBAuUEjEHKVS4wAQLJBYxBkhfcZ/Hu+FiYn15xr3jTusfEsuGRPrtTt0NgcAWMQQa3O3dOYCEEjEEa1Y1BGgEdJ0CgpIAxSMnahSZAILGAMUjickUjQKCcgDFIucoFJkAguYAxSPKC+yjebR8Ls3RoUfzh2jPjF1ee2kd36FYI5BAwBsnRoxQE5kvAGKRR2hikEdBxAgRKChiDlKxdaAIEEgsYgyQuVzQCBMoJGIOUq1xgAgSSCxiDJC+4T+J9aM/Ncf6mK2LX9IE4aWR1vPcu58RJo6v75O7cBoFcAsYgufqUhsBcCxiDNAobgzQCOk6AQEkBY5CStQtNgEBiAWOQxOWKRoBAOQFjkHKVC0yAQHIBY5DkBS9wvJnHwrxy6yfivTuv797JU8ZOiVeve2TMfDOIHwIE5kbAGGRuXF2VQFYBY5DGZo1BGgEdJ0CgpIAxSMnahSZAILGAMUjickUjQKCcgDFIucoFJkAguYAxSPKCFzDebR8Ls2x4JN607tHx0yvuvYB35K0J1BAwBqnRs5QEZkvAGKRR0hikEdBxAgRKChiDlKxdaAIEEgsYgyQuVzQCBMoJGIOUq1xgAgSSCxiDJC94geLd9rEwp42uifdseELca3TlAt2NtyVQS8AYpFbf0hJoFTAGaRQ0BmkEdJwAgZICxiAlaxeaAIHEAkaQf7kAACAASURBVMYgicsVjQCBcgLGIOUqF5gAgeQCxiDJC57neHd8LMwzVp4Wf7D2EbHEY2HmuQlvV1nAGKRy+7IT6F3AGKR3s9udMAZpBHScAIGSAsYgJWsXmgCBxALGIInLFY0AgXICxiDlKheYAIHkAsYgyQuex3i3fSzMiqGReMv6x8UTl58wj3fgrQgQmBEwBvE5IECgFwFjkF60DvNaY5BGQMcJECgpYAxSsnahCRBILGAMkrhc0QgQKCdgDFKucoEJEEguYAySvOB5infbx8Lcd/HazmNhzonjR8bm6d29DQECtxUwBvF5IECgFwFjkF60DvNaY5BGQMcJECgpYAxSsnahCRBILGAMkrhc0QgQKCdgDFKucoEJEEguYAySvOA5jnfHx8Kct+q+8bJjHhajQ8Nz/M4uT4DADxIwBvHZIECgFwFjkF60DvNaY5BGQMcJECgpYAxSsnahCRBILGAMkrhc0QgQKCdgDFKucoEJEEguYAySvOA5jHfbx8KsGV4Sb+88FuasZfeYw3d0aQIEjkTAGORIlLyGAIHvChiDNH4WjEEaAR0nQKCkgDFIydqFJkAgsYAxSOJyRSNAoJyAMUi5ygUmQCC5gDFI8oLnIN6eqYPx57uujzdu+2zsnj4YD1uyId61/uy4y8jyOXg3lyRAoFcBY5BexbyeQG0BY5DG/o1BGgEdJ0CgpIAxSMnahSZAILGAMUjickUjQKCcgDFIucoFJkAguYAxSPKCZzHe+NT+uHj8C/Hu8eti+9RE98ovXn1G/NYxD5nFd3EpAgRaBYxBWgWdJ1BLwBiksW9jkEZAxwkQKClgDFKydqEJEEgsYAySuFzRCBAoJ2AMUq5ygQkQSC5gDJK84FmIt2Vyb1y449r4853Xd78JZObnUUvvGr++5sFx5tK7zMI7uAQBArMpYAwym5quRSC/gDFIY8fGII2AjhMgUFLAGKRk7UITIJBYwBgkcbmiESBQTsAYpFzlAhMgkFzAGCR5wQ3xbj24J942/vl4/84bY9/0ZPdKT1h+XLxk9QPjoUvWN1zZUQIE5lLAGGQudV2bQD4BY5DGTo1BGgEdJ0CgpIAxSMnahSZAILGAMUjickUjQKCcgDFIucoFJkAguYAxSPKCjyLe1w/ujLfu+Hz87a4vxf7pqRjqXOMnl98zXrrmgXH64rVHcUVHCBCYTwFjkPnU9l4EBl/AGKSxQ2OQRkDHCRAoKWAMUrJ2oQkQSCxgDJK4XNEIECgnYAxSrnKBCRBILmAMkrzgHuJ9+cCOePP2q+Pvd38lJmM6RjozkJ9ZcWK8eM0ZcdLo6h6u5KUECCykgDHIQup7bwKDJ2AM0tiZMUgjoOMECJQUMAYpWbvQBAgkFjAGSVyuaAQIlBMwBilXucAECCQXMAZJXvARxLtu/9Z44/bPxr/u+XpnAhKxeGg4nrzi5M4I5IFxj5EVR3AFLyFAoJ8EjEH6qQ33QqD/BYxBGjsyBmkEdJwAgZICxiAlaxeaAIHEAsYgicsVjQCBcgLGIOUqF5gAgeQCxiDJC/4h8a6e2Bx/tP2q+Mje/zr0ql9ZeZ94UeebQO66aHldGMkJDLiAMciAF+j2CcyzgDFII7gxSCOg4wQIlBQwBilZu9AECCQWMAZJXK5oBAiUEzAGKVe5wAQIJBcwBkle8A+I9/Ydn48Ltn26+3dXDI3EL686PZ676r6xbtGymiBSE0gkYAySqExRCMyDgDFII7IxSCOg4wQIlBQwBilZu9AECCQWMAZJXK5oBAiUEzAGKVe5wAQIJBcwBkle8B3ibZ3cFy/cfEVcsfeWWDq0KF7aeRTMMzrfBrJqeHEtCGkJJBYwBklcrmgE5kDAGKQR1RikEdBxAgRKChiDlKxdaAIEEgsYgyQuVzQCBMoJGIOUq1xgAgSSCxiDJC/4NvE+se/WeM6my2LT5N44ZXR1XLTh8Z1/XVMHQFICRQSMQYoULSaBWRIwBmmENAZpBHScAIGSAsYgJWsXmgCBxALGIInLFY0AgXICxiDlKheYAIHkAsYgyQvuxJuK6Xjj9s/Fm7d/tvP7iKeMnRIXrD0zlg2P5A8vIYGCAsYgBUsXmUCDgDFIA97MUWOQRkDHCRAoKWAMUrJ2oQkQSCxgDJK4XNEIECgnYAxSrnKBCRBILmAMkrvgmW8Bec6mj8Qn9m3sPhbmDcc+On52xYm5Q0tHoLiAMUjxD4D4BHoUMAbpEeyOLzcGaQR0nACBkgLGICVrF5oAgcQCxiCJyxWNAIFyAsYg5SoXmACB5ALGIHkLvnzvf8WLNl8ZWyf3eSxM3polI/B9AsYgPhQECPQiYAzSi9ZhXmsM0gjoOAECJQWMQUrWLjQBAokFjEESlysaAQLlBIxBylUuMAECyQWMQfIVfHB6Kl637TNx4fg1nQfERDx57OR49dpHeixMvqolInBYAWMQHwwCBHoRMAbpRcsYpFHLcQIECHxbwBjEJ4EAAQK5BIxBcvUpDQECtQWMQWr3Lz0BAvkEjEFydXrLwd1x7sZL4+r9WzwWJle10hA4YgFjkCOm8kICBDoCxiCNHwPfDNII6DgBAiUFjEFK1i40AQKJBYxBEpcrGgEC5QSMQcpVLjABAskFjEHyFPzhPTfH+Z3HwoxP7fdYmDy1SkKgZwFjkJ7JHCBQWsAYpLF+Y5BGQMcJECgpYAxSsnahCRBILGAMkrhc0QgQKCdgDFKucoEJEEguYAwy+AUf6DwW5lXbPhnvHr+uG+ZnV5wYr1/3KI+FGfxqJSBwVALGIEfF5hCBsgLGII3VG4M0AjpOgEBJAWOQkrULTYBAYgFjkMTlikaAQDkBY5BylQtMgEByAWOQwS745oO74lmdx8J8Yf/W7vjj1WvPjCePnTLYodw9AQJNAsYgTXwOEygnYAzSWLkxSCOg4wQIlBQwBilZu9AECCQWMAZJXK5oBAiUEzAGKVe5wAQIJBcwBhncgv/3nq/HizddEbunD3oszODW6M4JzLqAMcisk7oggdQCxiCN9RqDNAI6ToBASQFjkJK1C02AQGIBY5DE5YpGgEA5AWOQcpULTIBAcgFjkMEreGJ6Ml6+5T/jfbtu7N68x8IMXofumMBcChiDzKWuaxPIJ2AM0tipMUgjoOMECJQUMAYpWbvQBAgkFjAGSVyuaAQIlBMwBilXucAECCQXMAYZrIK/emBn57Ew/x43HNjefSzMBZ3HwjzFY2EGq0R3S2COBYxB5hjY5QkkEzAGaSzUGKQR0HECBEoKGIOUrF1oAgQSCxiDJC5XNAIEygkYg5SrXGACBJILGIMMTsH/uPumeOmWj8XeKY+FGZzW3CmB+RcwBpl/c+9IYJAFjEEa2zMGaQR0nACBkgLGICVrF5oAgcQCxiCJyxWNAIFyAsYg5SoXmACB5ALGIP1f8Mz443e2fjz+dteXujfrsTD935k7JLCQAsYgC6nvvQkMnoAxSGNnxiCNgI4TIFBSwBikZO1CEyCQWMAYJHG5ohEgUE7AGKRc5QITIJBcwBikvwu+4cC2zmNhLo2Zx8MsHVrUeSzMI+MXVp7S3zft7ggQWFABY5AF5ffmBAZOwBiksTJjkEZAxwkQKClgDFKydqEJEEgsYAySuFzRCBAoJ2AMUq5ygQkQSC5gDNK/Bf/Fzhvi5Vs/EfumJ+Peo6vivRvOiVNG1/TvDbszAgT6QsAYpC9qcBMEBkbAGKSxKmOQRkDHCRAoKWAMUrJ2oQkQSCxgDJK4XNEIECgnYAxSrnKBCRBILmAM0n8F7546EC/efGX87z1f797czGNh/mjdo2L58Ej/3aw7IkCg7wSMQfquEjdEoK8FjEEa6zEGaQR0nACBkgLGICVrF5oAgcQCxiCJyxWNAIFyAsYg5SoXmACB5ALGIP1V8LX7t8a5ncfC3Hxwl8fC9Fc17obAwAgYgwxMVW6UQF8IGIM01mAM0gjoOAECJQWMQUrWLjQBAokFjEESlysaAQLlBIxBylUuMAECyQWMQfqn4IvHr4tXbftk7J+e8liY/qnFnRAYOAFjkIGrzA0TWFABY5BGfmOQRkDHCRAoKWAMUrJ2oQkQSCxgDJK4XNEIECgnYAxSrnKBCRBILmAMsvAFj0/tjxd1Hgvz73tu7t6Mx8IsfCfugMAgCxiDDHJ77p3A/AsYgzSaG4M0AjpOgEBJAWOQkrULTYBAYgFjkMTlikaAQDkBY5BylQtMgEByAWOQhSt4Z2cE8pc7vxh/vetLcf2Bbd3Hwrxq7Znx1JWnLtxNeWcCBAZewBhk4CsUgMC8ChiDNHIbgzQCOk6AQEkBY5CStQtNgEBiAWOQxOWKRoBAOQFjkHKVC0yAQHIBY5D5L/hLB3bERTuujb/b/eXYNz3ZvYHTFx8Tbz32cXGfzr/6IUCAQIuAMUiLnrME6gkYgzR2bgzSCOg4AQIlBYxBStYuNAECiQWMQRKXKxoBAuUEjEHKVS4wAQLJBYxB5qfg6c7bXNp5DMzFO6+LK/beEjP/frjz60eXHR/nrj49HrP07vNzI96FAIH0AsYg6SsWkMCsChiDNHIagzQCOk6AQEkBY5CStQtNgEBiAWOQxOWKRoBAOQFjkHKVC0yAQHIBY5C5LXjP1MH4y11fjPd2RiA3HRjvvtmq4cXxlLGT49mr7hvHjYzN7Q24OgEC5QSMQcpVLjCBJgFjkCa+CGOQRkDHCRAoKWAMUrJ2oQkQSCxgDJK4XNEIECgnYAxSrnKBCRBILmAMMjcFf+3Azs63gHwh/mbnl2Ln9IHum5w0sjqe1fkWkCevODmWD4/MzRu7KgEC5QWMQcp/BAAQ6EnAGKQnru9/sTFII6DjBAiUFDAGKVm70AQIJBYwBklcrmgECJQTMAYpV7nABAgkFzAGmd2CZx4B8+7Ot4DMPBJm5lEwQ51fZy+7R5y76vTOvx7X/fd+CBAgMJcCxiBzqevaBPIJGIM0dmoM0gjoOAECJQWMQUrWLjQBAokFjEESlysaAQLlBIxBylUuMAECyQWMQWan4H/Z87V49bZPdR4Fs7N7wWWdb/74xbFT4tyV9417jq6cnTdxFQIECByBgDHIESB5CQEChwSMQRo/DMYgjYCOEyBQUsAYpGTtQhMgkFjAGCRxuaIRIFBOwBikXOUCEyCQXMAYpL3g39v6n/Ge8eu6FzphZCx+ZeXp8YurTo2xodH2i7sCAQIEehQwBukRzMsJFBcwBmn8ABiDNAI6ToBASQFjkJK1C02AQGIBY5DE5YpGgEA5AWOQcpULTIBAcgFjkKMv+KudbwE5b9NH4gv7t3Yv8j+PeWi8cPUDjv6CThIgQGAWBIxBZgHRJQgUEjAGaSzbGKQR0HECBEoKGIOUrF1oAgQSCxiDJC5XNAIEygkYg5SrXGACBJILGIMcXcH/uPumeOmWj8XeqYNxl0XL4h3rz45HLL3L0V3MKQIECMyigDHILGK6FIECAsYgjSUbgzQCOk6AQEkBY5CStQtNgEBiAWOQxOWKRoBAOQFjkHKVC0yAQHIBY5DeCt43PRm/s+U/4m92fal78Kxld4+3rz8r1gwv6e1CXk2AAIE5EjAGmSNYlyWQVMAYpLFYY5BGQMcJECgpYAxSsnahCRBILGAMkrhc0QgQKCdgDFKucoEJEEguYAxy5AXfcGBbnHfrZfHlgztiJIbit9c+NJ6/6v5HfgGvJECAwDwIGIPMA7K3IJBIwBiksUxjkEZAxwkQKClgDFKydqEJEEgsYAySuFzRCBAoJ2AMUq5ygQkQSC5gDHJkBb9/5w3x+1s/ETPfDHL3RSvi4g2PjzOWHHtkh72KAAEC8yhgDDKP2N6KQAIBY5DGEo1BGgEdJ0CgpIAxSMnahSZAILGAMUjickUjQKCcgDFIucoFJkAguYAxyA8vePfUgXjx5ivjf+/5eveFT1h+fLz12MfGquHFyT8Z4hEgMKgCxiCD2pz7JrAwAsYgje7GII2AjhMgUFLAGKRk7UITIJBYwBgkcbmiESBQTsAYpFzlAhMgkFzAGOQHF3zt/q1x7sZL4+aDu2Lx0HD87jEPj3NXnZ78EyEeAQKDLmAMMugNun8C8ytgDNLobQzSCOg4AQIlBYxBStYuNAECiQWMQRKXKxoBAuUEjEHKVS4wAQLJBYxBDl/wxePXxau2fTL2T0/F8SNjncfCnBP3W7w2+adBPAIEMggYg2RoUQYC8ydgDNJobQzSCOg4AQIlBYxBStYuNAECiQWMQRKXKxoBAuUEjEHKVS4wAQLJBYxBbl/w+NT+eFHnsTD/vufm7t944vIT4i2dx8KsGB5N/kkQjwCBLALGIFmalIPA/AgYgzQ6G4M0AjpOgEBJAWOQkrULTYBAYgFjkMTlikaAQDkBY5BylQtMgEByAWOQ7xV89cTmzmNhPhK3TO6OpUOL4hVrHxG/tPK05J8A8QgQyCZgDJKtUXkIzK2AMUijrzFII6DjBAiUFDAGKVm70AQIJBYwBklcrmgECJQTMAYpV7nABAgkFzAG+XbBb9/x+Xjdts/EwZiOe42ujPd0Hgtz2ugxydsXjwCBjALGIBlblYnA3AkYgzTaGoM0AjpOgEBJAWOQkrULTYBAYgFjkMTlikaAQDkBY5BylQtMgEBygepjkK2T+zqPhbkiLt97S7fpJ42dHK9Z+8hYNjySvHnxCBDIKmAMkrVZuQjMjYAxSKOrMUgjoOMECJQUMAYpWbvQBAgkFjAGSVyuaAQIlBMwBilXucAECCQXqDwG+cS+W+M5my6LTZN7u+OPN617dPz0insnb1w8AgSyCxiDZG9YPgKzK2AM0uhpDNII6DgBAiUFjEFK1i40AQKJBYxBEpcrGgEC5QSMQcpVLjABAskFKo5BpjqPgnnz9s/Fmzq/Jju/P210TeexME/oPh7GDwECBAZdwBhk0Bt0/wTmV8AYpNHbGKQR0HECBEoKGIOUrF1oAgQSCxiDJC5XNAIEygkYg5SrXGACBJILVBuDzHwLyHM2fSQ+sW9jt9mnj50ar1h3ZiwZWpS8afEIEKgiYAxSpWk5CcyOgDFIo6MxSCOg4wQIlBQwBilZu9AECCQWMAZJXK5oBAiUEzAGKVe5wAQIJBeoNAb52L5vxvM2XR5bJ/fFiqGReMv6x8UTl5+QvGHxCBCoJmAMUq1xeQm0CRiDtPmFMUgjoOMECJQUMAYpWbvQBAgkFjAGSVyuaAQIlBMwBilXucAECCQXqDAGmXkUzOu3XRVv3XF153cR9128tvNYmHPi+JGx5O2KR4BARQFjkIqty0zg6AWMQY7ernvSGKQR0HECBEoKGIOUrF1oAgQSCxiDJC5XNAIEygkYg5SrXGACBJILZB+D3HpwTzy781iYz0xs6jZ57qrT4/eOeXiMDg0nb1Y8AgSqChiDVG1ebgJHJ2AMcnRuh04ZgzQCOk6AQEkBY5CStQtNgEBiAWOQxOWKRoBAOQFjkHKVC0yAQHKBzGOQy/f+V7xg0xWxfWoiVg0vjj899rHxo8uPT96oeAQIVBcwBqn+CZCfQG8CxiC9eX3fq41BGgEdJ0CgpIAxSMnahSZAILGAMUjickUjQKCcgDFIucoFJkAguUDGMciB6am4YNun4qLxL3TbO2Pxuri481iYu4+sSN6meAQIEIgwBvEpIECgFwFjkF60DvNaY5BGQMcJECgpYAxSsnahCRBILGAMkrhc0QgQKCdgDFKucoEJEEgukG0MsnNqfzzlW/8Wn9u/pdvcC1bdP1629mHJWxSPAAEC3xMwBvFpIECgFwFjkF60DvNaY5BGQMcJECgpYAxSsnahCRBILGAMkrhc0QgQKCdgDFKucoEJEEgukGUM8o2Du+Kt26+O9+26sdvYMcNL4q3rHxdnL7tH8gbFI0CAwO0FjEF8IggQ6EXAGKQXrcO81hikEdBxAgRKChiDlKxdaAIEEgsYgyQuVzQCBMoJGIOUq1xgAgSSCwz6GOS6/Vvjwh3Xxgd2f/lQUz+z4t7xB2sfEesXLUvenngECBD4fgFjEJ8KAgR6ETAG6UXrMK81BmkEdJwAgZICxiAlaxeaAIHEAsYgicsVjQCBcgLGIOUqF5gAgeQCgzoG+ei+W+JtO66JK/be0m1oydBwPHnFyfH81Q+Ie46uTN6aeAQIEPjBAsYgPh0ECPQiYAzSi9ZhXmsM0gjoOAECJQWMQUrWLjQBAokFjEESlysaAQLlBIxBylUuMAECyQUGaQwy3enin3d/Nd6+4/Pxuf1bus2sGl4cz1h5Wjxn1X1jnW8CSf5pFY8AgSMRMAY5EiWvIUDguwLGII2fBWOQRkDHCRAoKWAMUrJ2oQkQSCxgDJK4XNEIECgnYAxSrnKBCRBILjAIY5D901PxN7u+GO8YvzZuOjDebeQuneHHeavvF88YOy1WDI8mb0k8AgQIHLmAMciRW3klAQIRxiCNnwJjkEZAxwkQKClgDFKydqEJEEgsYAySuFzRCBAoJ2AMUq5ygQkQSC7Qz2OQnVP745Kd18fF49fFxsm93SZOHFnVeRTM/eNJYyfHaOfRMH4IECBA4PYCxiA+EQQI9CJgDNKL1mFeawzSCOg4AQIlBYxBStYuNAECiQWMQRKXKxoBAuUEjEHKVS4wAQLJBfpxDLJtaiLevP1z8f5dN8aeqYPdBh64eF28ZM0D48eXn5C8EfEIECDQJmAM0ubnNIFqAsYgjY0bgzQCOk6AQEkBY5CStQtNgEBiAWOQxOWKRoBAOQFjkHKVC0yAQHKBfhuDfHpiYzx740cOfRPIOcuOi+d2HgfzmKV3S96EeAQIEJgdAWOQ2XF0FQJVBIxBGps2BmkEdJwAgZICxiAlaxeaAIHEAsYgicsVjQCBcgLGIOUqF5gAgeQC/TQG+dMdV8drt32mK37a6Jp46/rHxX0Xr03egHgECBCYXQFjkNn1dDUC2QWMQRobNgZpBHScAIGSAsYgJWsXmgCBxALGIInLFY0AgXICxiDlKheYAIHkAv0wBtneeSzMCzZdHpfvvaWr/eSxk+M1634klg4tSq4vHgECBGZfwBhk9k1dkUBmAWOQxnaNQRoBHSdAoKSAMUjJ2oUmQCCxgDFI4nJFI0CgnIAxSLnKBSZAILnAQo9BPj2xKc7beGncOrm3O/74k2MfEz+94t7J1cUjQIDA3AkYg8ydrSsTyChgDNLYqjFII6DjBAiUFDAGKVm70AQIJBYwBklcrmgECJQTMAYpV7nABAgkF1ioMch0x/WtncfCvGHbVXEwpuOkkdXx3rucEyeNrk4uLh4BAgTmVsAYZG59XZ1ANgFjkMZGjUEaAR0nQKCkgDFIydqFJkAgsYAxSOJyRSNAoJyAMUi5ygUmQCC5wEKMQWYeC/OcjR+Jj+37Vlf3qStPiVetfaTHwiT/rIlHgMD8CBiDzI+zdyGQRcAYpLFJY5BGQMcJECgpYAxSsnahCRBILGAMkrhc0QgQKCdgDFKucoEJEEguMN9jkNs+FmbZ8Ei8ad2jPRYm+WdMPAIE5lfAGGR+vb0bgUEXMAZpbNAYpBHQcQIESgoYg5SsXWgCBBILGIMkLlc0AgTKCRiDlKtcYAIEkgvM1xhk5rEwf/qdx8JMdh4Lc9romnjPhifEvUZXJhcWjwABAvMrYAwyv97ejcCgCxiDNDZoDNII6DgBAiUFjEFK1i40AQKJBYxBEpcrGgEC5QSMQcpVLjABAskF5mMMsnVyXzxv02WHHgvztJWnxh+uPTOWDC1KriseAQIE5l/AGGT+zb0jgUEWMAZpbM8YpBHQcQIESgoYg5SsXWgCBBILGIMkLlc0AgTKCRiDlKtcYAIEkgvM9Rhk5rEw5268NDZN7g2PhUn+YRKPAIG+EDAG6Ysa3ASBgREwBmmsyhikEdBxAgRKChiDlKxdaAIEEgsYgyQuVzQCBMoJGIOUq1xgAgSSC8zVGGTmsTBv2f65+OPtnw2PhUn+IRKPAIG+EjAG6as63AyBvhcwBmmsyBikEdBxAgRKChiDlKxdaAIEEgsYgyQuVzQCBMoJGIOUq1xgAgSSC8zFGORvd30pPrj7K3H53lu6es9YeVq8Zt2PJJcUjwABAv0hYAzSHz24CwKDImAM0tiUMUgjoOMECJQUMAYpWbvQBAgkFjAGSVyuaAQIlBMwBilXucAECCQXmK0xyPX7t8UlO6+PD+76SuycPtBVO3bRss4I5JHxk8vvmVxRPAIECPSPgDFI/3ThTggMgoAxyG1a2rp9Z/z2Be+Mb23aFv/wZxcc+ju/8PxXxvVf/FrEzD8R6fysGlseV3zwLd3fG4MMwsfcPRIg0G8CxiD91oj7IUCAQJuAMUibn9MECBDoJwFjkH5qw70QIECgXaBlDLJ36mD8w56b4i923hifmdh06GYevmRDPHPVfeKnlt8rFg8Nt9+kKxAgQIDAEQsYgxwxlRcSINARMAb5zsdg95598dTO6OOsH3lQXP7xz91uDPJTT//tePMrz4+T732P7/vQGIP4nyMCBAj0LmAM0ruZEwQIEOhnAWOQfm7HvREgQKA3AWOQ3ry8mgABAv0ucDRjkOv2b4337byh8yiYm2J8an834vLhkfi55SfGL3dGIKcvXtvvsd0fAQIE0goYg6StVjACcyJgDPId1j1798XmrTu6v/7gjy+53RjkrJ97Sfz1O18ed13//X/INQaZk8+lixIgkFzAGCR5weIRIFBOwBikXOUCEyCQWMAYJHG5ohEgUFLgSMcgM98C8sHdX4n/1fkWkKv2bz5kdcro6njGyvvEk1eeHGNDoyUNhSZAgEA/CRiD9FMb7oVA/wsYg9yho898/sbvG4M8+MfOi8edeUbM/L21x6yKX33OkzvfIPLA7kljkP7/kLtDAgT6T8AYpP86cUcECBBoETAGadFzlgABAv0lYAzSX324GwIECLQK3NkYZOZbQC4Zv777LSC7pg90324khuKJK07ojkAevfRurbfgPAECKcsaRQAAIABJREFUBAjMooAxyCxiuhSBAgLGIHco+Y5jkKmp6fi9P7o4fvRxD43HPOKM+Ognro7f/MN3xD9c8pq424a1sWP3t/+A7IcAAQIEjlxgZNFQLB4Zjj0Tk0d+qM9eOdRn9zPQtwNzoOtz8wRmBJYtXhQHJqfi4OQ0EAIECBAYcIGZP5qNLRuNnXv9844Br9LtEyDQi0DiP8YuHh2OmaHfxP6p24lMTE/Gr9/6sfjz7Tce+ut3G1kev7zmPvErnV936fy+yk/i+qtUKCeBUgIrl43E7n0Ho/NfX/bVz+oVvj2qrwpxMwS+I2AMcoePwuG+GeSOn5ZnvfR18XM/+bj47//tR2KXfzjif5gIECDQs8Ci4aEY7YxB9u0f3DFIn/1Zu+cO+unAUOf/48gPAQKDLbC0MwY5aAwy2CW6ewIECHxXoPNHs7GlI51/3nGQCQECBMoITEfe/yt/5v8ZZ+b/7p44+L1/BvOV/ePxjG98OK7et7Xb8eNW3C2efczp8TOrTizT+W2D+qcSJWsXmsDACizv/Fl9b+f/yXJ6ur/+d9fMoNwPAQL9J2AMcodO7jgG2bN3Im78ys3xoPudfOiVz3jxq+NpP/ff4sfPfrjHxPTfZ9odESAwAAIeEzMAJblFAgQI9CDgMTE9YHkpAQIE+lzAY2L6vCC3R4AAgR4F7viYmA/tuTnO33RF95EwGxYti4s2PD4etmRDj1f1cgIECBBYKAGPiVkoee9LYDAFjEHu0NsdxyDju/bEE5700njTK17UeUzMAzqPifl8/MYrL4x/et9rY90xq4xBBvNz764JEFhgAWOQBS7A2xMgQGCWBYxBZhnU5QgQILCAAsYgC4jvrQkQIDAHAt8dg2zdPREXbP90vGvHtd13+ZGld413rj8r1nUGIX4IECBAYHAEjEEGpyt3SqAfBIxBvtPCh6/8dPx6Z+TR+V6lOND5yrzR0ZG49/F3jQ++51Vx5X9+Pl5/4V/FrZu2xnF3Wx+/+cKnxpkPPr178pYte/uhR/dAgACBgRIwBhmoutwsAQIE7lTAGOROibyAAAECAyNgDDIwVblRAgQIHJHAzBjkW5N74he++qG4av/m7oNaX7zmgfHrax4UMw+Q8UOAAAECgyVgDDJYfblbAgstYAzS2IAxSCOg4wQIlBQwBilZu9AECCQWMAZJXK5oBAiUEzAGKVe5wAQIJBf47PSmePo3PhxbJydizfCSeEfn20Aeu+zuyVOLR4AAgbwCxiB5u5WMwFwIGIM0qhqDNAI6ToBASQFjkJK1C02AQGIBY5DE5YpGgEA5AWOQcpULTIBAUoHpTq43bf9s99dU5/cPXnxsXHSXc+Jui5YnTSwWAQIEaggYg9ToWUoCsyVgDNIoaQzSCOg4AQIlBYxBStYuNAECiQWMQRKXKxoBAuUEjEHKVS4wAQIJBbZNTcTzN14eV+67pZvueWvvF7+z8qExMjScMK1IBAgQqCVgDFKrb2kJtAoYgzQKGoM0AjpOgEBJAWOQkrULTYBAYgFjkMTlikaAQDkBY5BylQtMgEAygasmNsd5Gy+Nb07uieXDI3Hh3R4XP7f6pBjfcyBZUnEIECBQU8AYpGbvUhM4WgFjkKOV+845Y5BGQMcJECgpYAxSsnahCRBILGAMkrhc0QgQKCdgDFKucoEJEEgkcNH4F+KCbZ+KA9NTccro6njPhifEGavWxnDnP9yNQRIVLQoBAqUFjEFK1y88gZ4FjEF6Jrv9AWOQRkDHCRAoKWAMUrJ2oQkQSCxgDJK4XNEIECgnYAxSrnKBCRBIILBr+kCcv/GK+NDem7tpfnbFifH6dY+KZZ1vBhlbNmIMkqBjEQgQIPBdAWMQnwUCBHoRMAbpReswrzUGaQR0nACBkgLGICVrF5oAgcQCxiCJyxWNAIFyAsYg5SoXmACBARe4dv+WeM6my+KrB3Z2k7x23Y/E01eediiVMciAF+z2CRAgcAcBYxAfCQIEehEwBulF6zCvNQZpBHScAIGSAsYgJWsXmgCBxALGIInLFY0AgXICxiDlKheYAIEBFNg3PRkf2PWleN+uG+PzE1u6CY4fGYuLN5wT91u89naJjEEGsGC3TIAAgR8iYAzi40GAQC8CxiC9aB3mtcYgjYCOEyBQUsAYpGTtQhMgkFjAGCRxuaIRIFBOwBikXOUCEyAwQAJf63z7x3t3Xhd/3RmCjE/t7975XRYt634TyLmr7hurhhd/XxpjkAEq2K0SIEDgCASMQY4AyUsIEDgkYAzS+GEwBmkEdJwAgZICxiAlaxeaAIHEAsYgicsVjQCBcgLGIOUqF5gAgT4XmIzp+D97bo5Ldl4fV+69pfPvIoY6vx6z9O7xzFX3iR9bfnws6v6Vw/8Yg/R5wW6PAAECPQoYg/QI5uUEigsYgzR+AIxBGgEdJ0CgpIAxSMnahSZAILGAMUjickUjQKCcgDFIucoFJkCgTwU2T+6N9++8Mf6i8+uWyd3du1zd+eaPJ4+dHM9YeZ84cXTVEd25McgRMXkRAQIEBkbAGGRgqnKjBPpCwBiksQZjkEZAxwkQKClgDFKydqEJEEgsYAySuFzRCBAoJ2AMUq5ygQkQ6DOB/9x3a/dbQP5lz9fiwPRU9+4esGRdPHPstPiZFSfGsuGRnu7YGKQnLi8mQIBA3wsYg/R9RW6QQF8JGIM01mEM0gjoOAECJQWMQUrWLjQBAokFjEESlysaAQLlBIxBylUuMAECfSLwvp03xJ+NXx/XH9h26I5+fsVJ8YzOo2AeumT9Ud+lMchR0zlIgACBvhQwBunLWtwUgb4VMAZprMYYpBHQcQIESgoYg5SsXWgCBBILGIMkLlc0AgTKCRiDlKtcYAIEFlhg5hEwz9t4WXx6YlP3To4fGYtfWnlqPG3laXHM8JLmuzMGaSZ0AQIECPSVgDFIX9XhZgj0vYAxSGNFxiCNgI4TIFBSwBikZO1CEyCQWMAYJHG5ohEgUE7AGKRc5QITILCAAh/ec3O8ZPNHY/vURDyk8+0fL1l9Rvzo8uNn9Y6MQWaV08UIECCw4ALGIAtegRsgMFACxiCNdRmDNAI6ToBASQFjkJK1C02AQGIBY5DE5YpGgEA5AWOQcpULTIDAAggcnJ6K12z7TLxz/Jruuz931f3jd455SIwMDc/63RiDzDqpCxIgQGBBBYxBFpTfmxMYOAFjkMbKjEEaAR0nQKCkgDFIydqFJkAgsYAxSOJyRSNAoJyAMUi5ygUmQGCeBW45uDvO3XhpXL1/S6waXhxvO/Zxcc7y4+bsLoxB5ozWhQkQILAgAsYgC8LuTQkMrIAxSGN1xiCNgI4TIFBSwBikZO1CEyCQWMAYJHG5ohEgUE7AGKRc5QITIDCPApfv/a943qbLY3xqfzx48bHxzg2Pj3uMrJjTOzAGmVNeFydAgMC8CxiDzDu5NyQw0ALGII31GYM0AjpOgEBJAWOQkrULTYBAYgFjkMTlikaAQDkBY5BylQtMgMA8CMw8FuaC7Z+Od+24tvtu5626b/zuMQ+bk8fC3DGOMcg8FOwtCBAgMI8CxiDziO2tCCQQMAZpLNEYpBHQcQIESgoYg5SsXWgCBBILGIMkLlc0AgTKCRiDlKtcYAIE5ljgjo+FefOxj40fW378HL/r9y5vDDJv1N6IAAEC8yJgDDIvzN6EQBoBY5DGKo1BGgEdJ0CgpIAxSMnahSZAILGAMUjickUjQKCcgDFIucoFJkBgDgU+vOfmOH/zld3Hwtx/8bp4z4Zz5vyxMHeMYwwyhwW7NAECBBZAwBhkAdC9JYEBFjAGaSzPGKQR0HECBEoKGIOUrF1oAgQSCxiDJC5XNAIEygkYg5SrXGACBOZA4EDnsTCv2vbJePf4dd2rP3vV6fGyYx4ei4eG5+DdfvgljUHmndwbEiBAYE4FjEHmlNfFCaQTMAZprNQYpBHQcQIESgoYg5SsXWgCBBILGIMkLlc0AgTKCRiDlKtcYAIEZllg5rEwz9z47/GF/Vtj1fDimO/HwtwxjjHILBfscgQIEFhgAWOQBS7A2xMYMAFjkMbCjEEaAR0nQKCkgDFIydqFJkAgsYAxSOJyRSNAoJyAMUi5ygUmQGAWBfrhsTDGILNYqEsRIECgDwWMQfqwFLdEoI8FjEEayzEGaQR0nACBkgLGICVrF5oAgcQCxiCJyxWNAIFyAsYg5SoXmACBWRDYNz0Zr9v+mfiLnTfEnqmD8azOY2H+cO2Zs3Dl9kv4ZpB2Q1cgQIBAPwkYg/RTG+6FQP8LGIM0dmQM0gjoOAECJQWMQUrWLjQBAokFjEESlysaAQLlBIxBylUuMAECjQLXTGyJ522+LG46sDPGhkbjTesfEz+5/J6NV52948Ygs2fpSgQIEOgHAWOQfmjBPRAYHAFjkMaujEEaAR0nQKCkgDFIydqFJkAgsYAxSOJyRSNAoJyAMUi5ygUmQOAoBaZiOi7ccU28fvtVcWB6Kh62ZEO8Y8PZcbdFy4/yinNzzBhkblxdlQABAgslYAyyUPLel8BgChiDNPZmDNII6DgBAiUFjEFK1i40AQKJBYxBEpcrGgEC5QSMQcpVLjABAkch8M3JPfG8jZfFpyY2xkgMxa+ueVCcv+aMGO78vt9+jEH6rRH3Q4AAgTYBY5A2P6cJVBMwBmls3BikEdBxAgRKChiDlKxdaAIEEgsYgyQuVzQCBMoJGIOUq1xgAgR6FPjA7i/H7275zxif2h/HjayIi9efE/dfsq7Hq8zfy41B5s/aOxEgQGA+BIxB5kPZexDII2AM0tilMUgjoOMECJQUMAYpWbvQBAgkFjAGSVyuaAQIlBMwBilXucAECByhwI6pifj1zR+Lf9nz9e6JJ42dHBesPTNWDI8e4RUW5mXGIAvj7l0JECAwVwLGIHMl67oEcgoYgzT2agzSCOg4AQIlBYxBStYuNAECiQWMQRKXKxoBAuUEjEHKVS4wAQJHIPDxfd+K52+6PDZO7o2VQ6PxxvWPiZ9cfs8jOLnwLzEGWfgO3AEBAgRmU8AYZDY1XYtAfgFjkMaOjUEaAR0nQKCkgDFIydqFJkAgsYAxSOJyRSNAoJyAMUi5ygUmQOCHCOyfnorXbP90XLTj2pjuvO5hSzbEOzacHXdbtHxg3IxBBqYqN0qAAIEjEjAGOSImLyJA4DsCxiCNHwVjkEZAxwkQKClgDFKydqEJEEgsYAySuFzRCBAoJ2AMUq5ygQkQ+AECXzywPc7b+JH44oEdMRJD8atrHhTnrzkjhju/H6QfY5BBasu9EiBA4M4FjEHu3MgrCBD4noAxSOOnwRikEdBxAgRKChiDlKxdaAIEEgsYgyQuVzQCBMoJGIOUq1xgAgTuIDDzDSAz3wTy2s43gkx0vhnkuJEV8c4Nj48HLT52IK2MQQayNjdNgACBHyhgDOLDQYBALwLGIL1oHea1xiCNgI4TIFBSwBikZO1CEyCQWMAYJHG5ohEgUE7AGKRc5QITIHAbgZsP7opXbv1E/Muer3f/6pPGTo4L1p4ZK4ZHB9bJGGRgq3PjBAgQOKyAMYgPBgECvQgYg/SidZjXGoM0AjpOgEBJAWOQkrULTYBAYgFjkMTlikaAQDkBY5BylQtMgEBH4JP7NsZF49fGP+/5WtdjbGg03nDso+KnV9x74H2MQQa+QgEIECBwOwFjEB8IAgR6ETAG6UXrMK81BmkEdJwAgZICxiAlaxeaAIHEAsYgicsVjQCBcgLGIOUqF5hAaYF/3H1TvGv8C/GZiU2HHJ6x8rQ4f80ZcfdFK1LYGIOkqFEIAgQIHBIwBvFhIECgFwFjkF60DvNaY5BGQMcJECgpYAxSsnahCRBILGAMkrhc0QgQKCdgDFKucoEJlBPYO3Uw/nr3l7rfBPLVAzu7+VcPL45nrLxPnLfq9Fi3aFkqE2OQVHUKQ4AAgTAG8SEgQKAXAWOQXrQO81pjkEZAxwkQKClgDFKydqEJEEgsYAySuFzRCBAoJ2AMUq5ygQmUEdgyuTfePX5d/PnOG2L71EQ39107w4/zVt8vnj52WqwYHk1pYQySslahCBAoLGAMUrh80QkchYAxyFGg3faIMUgjoOMECJQUMAYpWbvQBAgkFjAGSVyuaAQIlBMwBilXucAE0gt8+cCOePuOa+KDu78cE9NT3bwnjayO53dGID8/dnKMDg2nNjAGSV2vcAQIFBQwBilYusgEGgSMQRrwZo4agzQCOk6AQEkBY5CStQtNgEBiAWOQxOWKRoBAOQFjkHKVC0wgrcBH930z3rnj2vjI3m/E9HdSPmTJsfGC1WfEE5efEENpk98+mDFIkaLFJECgjIAxSJmqBSUwKwLGII2MxiCNgI4TIFBSwBikZO1CEyCQWMAYJHG5ohEgUE7AGKRc5QITSCfwgc43gPztzi/HlftuOZTtCcuPixesun88culd0+W9s0DGIHcm5O8TIEBgsASMQQarL3dLYKEFjEEaGzAGaQR0nACBkgLGICVrF5oAgcQCxiCJyxWNAIFyAsYg5SoXmEAKga2T++KSndd3ft0Qmyb3Hsr082MnxfNW3S9OX7w2Rc6jCWEMcjRqzhAgQKB/BYxB+rcbd0agHwWMQRpbMQZpBHScAIGSAsYgJWsXmgCBxALGIInLFY0AgXICxiDlKheYwEALXLd/a7yj8yiYv+t8G8h3f9YML4lfGDslnrXq9LjHyIqBzjcbN28MMhuKrkGAAIH+ETAG6Z8u3AmBQRAwBmlsyRikEdBxAgRKChiDlKxdaAIEEgsYgyQuVzQCBMoJGIOUq1xgAgMncHB6Kv51z9fi3ePXxacmNh66/wcuXhe/vOo+8T9WnBhLhhYNXK65umFjkLmSdV0CBAgsjIAxyMK4e1cCgypgDNLYnDFII6DjBAiUFDAGKVm70AQIJBYwBklcrmgECJQTMAYpV7nABAZGYNvURPxF5zEwl4xfH9+c3NO97yVDw/HTK+4dv7zy9HjwkmMHJst83qgxyHxqey8CBAjMvYAxyNwbewcCmQSMQRrbNAZpBHScAIGSAsYgJWsXmgCBxALGIInLFY0AgXICxiDlKheYQN8L3Hhge7xr/Nr44K6vxL7pye79Hj8yFk9feVr84spT45jOY2H8/GABYxCfDgIECOQSMAbJ1ac0BOZawBikUdgYpBHQcQIESgoYg5SsXWgCBBILGIMkLlc0AgTKCRiDlKtcYAJ9K/CRvd+IC3dcEx/b961D93j2snvEM1feJ35s+fF9e9/9dmPGIP3WiPshQIBAm4AxSJuf0wSqCRiDNDZuDNII6DgBAiUFjEFK1i40AQKJBYxBEpcrGgEC5QSMQcpVLjCBvhPYM3UwXrb14/E3u77UvbexodF46spT4lc6j4K55+jKvrvffr8hY5B+b8j9ESBAoDcBY5DevLyaQHUBY5DGT4AxSCOg4wQIlBQwBilZu9AECCQWMAZJXK5oBAiUEzAGKVe5wAT6SuCaiS3xvM2Xx00Hxrv39fJjHt59HMyy4ZG+us9BuhljkEFqy70SIEDgzgWMQe7cyCsIEPiegDFI46fBGKQR0HECBEoKGIOUrF1oAgQSCxiDJC5XNAIEygkYg5SrXGACfSPw7vEvxKu3fSompqfi+JGxeNf6s+OMJcf2zf0N6o0Ygwxqc+6bAAEChxcwBvHJIECgFwFjkF60DvNaY5BGQMcJECgpYAxSsnahCRBILGAMkrhc0QgQKCdgDFKucoEJLLjA9qmJePHmj8a/77m5ey8/veJe8cfrHh0rhkcX/N4y3IAxSIYWZSBAgMD3BIxBfBoIEOhFwBikF63DvNYYpBHQcQIESgoYg5SsXWgCBBILGIMkLlc0AgTKCRiDlKtcYAILKvCJfbfG8zZdFrdO7o3lnUfBvGrtmfGUsVMW9J6yvbkxSLZG5SFAoLqAMUj1T4D8BHoTMAbpzev7Xm0M0gjoOAECJQWMQUrWLjQBAokFjEESlysaAQLlBIxBylUuMIEFEZiM6Xjj9s/GW7Z/LqY6d3Da6Jp4z4YnxL1GVy7I/WR+U2OQzO3KRoBARQFjkIqty0zg6AWMQY7ernvSGKQR0HECBEoKGIOUrF1oAgQSCxiDJC5XNAIEygkYg5SrXGAC8y5wy8Hd8dzOt4F8ZmJT972fter0+N1jHhZLhhbN+71UeENjkAoty0iAQCUBY5BKbctKoF3AGKTR0BikEdBxAgRKChiDlKxdaAIEEgsYgyQuVzQCBMoJGIOUq1xgAvMq8OE9N8f5m6+M8an9sWZ4Sbz52MfEjy4/fl7vodqbGYNUa1xeAgSyCxiDZG9YPgKzK2AM0uhpDNII6DgBAiUFjEFK1i40AQKJBYxBEpcrGgEC5QSMQcpVLjCBeRGYmJ6MV2z9RFyy84bu+z1i6YZ4x7Fnx11Gls/L+1d+E2OQyu3LToBARgFjkIytykRg7gSMQRptjUEaAR0nQKCkgDFIydqFJkAgsYAxSOJyRSNAoJyAMUi5ygUmMOcCXz6wI87b+JG44cD2WBRD8dI1D4yXdH4Nd37vZ+4FjEHm3tg7ECBAYD4FjEHmU9t7ERh8AWOQxg6NQRoBHSdAoKSAMUjJ2oUmQCCxgDFI4nJFI0CgnIAxSLnKBSYwpwL/sudr3SHIzM/dFi2Pd244Ox66ZMOcvqeL317AGMQnggABArkEjEFy9SkNgbkWMAZpFDYGaQR0nACBkgLGICVrF5oAgcQCxiCJyxWNAIFyAsYg5SoXmMCsC+yYmoi/2vnF+F+7vhhf6nwryMzPjy8/Pt547GNizfCSWX8/F/zhAsYgPiEECBDIJWAMkqtPaQjMtYAxSKOwMUgjoOMECJQUMAYpWbvQBAgkFjhm5eLYu+9g7DswlTilaAQIEKghYAxSo2cpCcyFwP/d9634684I5O92f/nQ5U8YGYsXrn5A/NLK0+biLV3zCASMQY4AyUsIECAwQALGIANUllsl0AcCxiCNJRiDNAI6ToBASQFjkJK1C02AQGIBY5DE5YpGgEA5AWOQcpULTKBJYFvnW0D+pjMAeX/n15cPfvtbQJYMDcdPLL9nPK0zAHnU0rs2Xd/hdgFjkHZDVyBAgEA/CRiD9FMb7oVA/wsYgzR2ZAzSCOg4AQIlBYxBStYuNAECiQWMQRKXKxoBAuUEjEHKVS4wgaMS+Ni+b3YGIDfGv+75Wuyf/va3w500srrzDSCnxpNWnhzHeBzMUbnOxSFjkLlQdU0CBAgsnIAxyMLZe2cCgyhgDNLYmjFII6DjBAiUFDAGKVm70AQIJBYwBklcrmgECJQTMAYpV7nABI5YYOZbQP5q18y3gNwYNx0Y756b+RaQn1p+r863gJwaj/QtIEdsOZ8vNAaZT23vRYAAgbkXMAaZe2PvQCCTgDFIY5vGII2AjhMgUFLAGKRk7UITIJBYwBgkcbmiESBQTsAYpFzlAhO4U4FPT2yMd+y4Jv5lz9cPvfbk0dXxzJX3if9n7MRY7VtA7tRwIV9gDLKQ+t6bAAECsy9gDDL7pq5IILOAMUhju8YgjYCOEyBQUsAYpGTtQhMgkFjAGCRxuaIRIFBOwBikXOUCE/ihAhds/VS8ffyaQ6/5uRUnxtNXnhaPWHoXcgMiYAwyIEW5TQIECByhgDHIEUJ5GQECXQFjkMYPgjFII6DjBAiUFDAGKVm70AQIJBYwBklcrmgECJQTMAYpV7nABA4rcPPBXfH8jZfFVfs3d//+/7vmgfHcVfeLVcOLiQ2YgDHIgBXmdgkQIHAnAsYgPiIECPQiYAzSi9ZhXmsM0gjoOAECJQWMQUrWLjQBAokFjEESlysaAQLlBIxBylUuMIHvE/jH3TfFr23+WOyePhjrFy2Lt61/XDx66d1IDaiAMciAFue2CRAg8AMEjEF8NAgQ6EXAGKQXrcO81hikEdBxAgRKChiDlKxdaAIEEgsYgyQuVzQCBMoJGIOUq1xgAocE9k1Pxsu2fDz+atcXu3/t0UvvGu9Yf3asXbSU0gALGIMMcHlunQABAocRMAbxsSBAoBcBY5BetA7zWmOQRkDHCRAoKWAMUrJ2oQkQSCxgDJK4XNEIECgnYAxSrnKBCXQFbjiwLc679bL48sEdMTo0HL+55sHx/NUPiCE+Ay9gDDLwFQpAgACB2wkYg/hAECDQi4AxSC9ah3mtMUgjoOMECJQUMAYpWbvQBAgkFjAGSVyuaAQIlBMwBilXucAE4s92Xh+v3PqJmJieiuNHxuJdnW8DOWPJsWSSCBiDJClSDAIECHxHwBjER4EAgV4EjEF60TIGadRynAABAt8WMAbxSSBAgEAuAWOQXH1KQ4BAbQFjkNr9S19LYPvURLx480fj3/fc3A3+xOUnxFuOfWysGB6tBZE8rTFI8oLFI0CgnIAxSLnKBSbQJGAM0sQX4ZtBGgEdJ0CgpIAxSMnahSZAILGAMUjickUjQKCcgDFIucoFLirw6YlNcd7GS+PWyb2xbHgk/vCYR8RTV55aVCN3bGOQ3P1KR4BAPQFjkHqdS0ygRcAYpEWvc9YYpBHQcQIESgoYg5SsXWgCBBILGIMkLlc0AgTKCRiDlKtc4GICUzEdf7L9c91fk53fnza6Ji7a8Pg4aXR1MYk6cY1B6nQtKQECNQSMQWr0LCWB2RIwBmmUNAZpBHScAIGSAsYgJWsXmgCBxALGIInLFY0AgXICxiDlKhe4kMCtB/fE8zZfFp/Yt7Gb+pkrT4uXr31ELBlaVEihXlRjkHqdS0yAQG4BY5Dc/UpHYLYFjEEaRY1BGgEdJ0CgpIAxSMnahSZAILGAMUjickUjQKCcgDFIucoFLiCwe+pAvH/njfEnOz4XO6b2x+rhxfHGYx8TT1x+QoH0IhqD+AwQIEAgl4AxSK4+pSEw1wLGII3CxiCNgI4TIFBSwBikZO1CEyCQWMAYJHG5ohEgUE7AGKRc5QInFrhlcne8a8e18Zc7vxi7pg8MGm7qAAAgAElEQVR0kz5syYa4cP1ZcfeRFYmTi3ZbAWMQnwcCBAjkEjAGydWnNATmWsAYpFHYGKQR0HECBEoKGIOUrF1oAgQSCxiDJC5XNAIEygkYg5SrXOCEAtdMbIl3jX8hPrD7y4fSHTO8JJ67+n5x/uozEiYW6YcJGIP4fBAgQCCXgDFIrj6lITDXAsYgjcLGII2AjhMgUFLAGKRk7UITIJBYwBgkcbmiESBQTsAYpFzlAicRmO7k+D97bo53jl8TH99366FUD1iyLs5deXr8jxUnxuKh4SRpxehFwBikFy2vJUCAQP8LGIP0f0fukEA/CRiDNLZhDNII6DgBAiUFjEFK1i40AQKJBYxBEpcrGgEC5QSMQcpVLvCAC+ydOhh/2/kGkIs6j4P5ysHxbpqRGIonrrhndwTyiKV3GfCEbr9VwBikVdB5AgQI9JeAMUh/9eFuCPS7gDFIY0PGII2AjhMgUFLAGKRk7UITIJBYwBgkcbmiESBQTsAYpFzlAg+owJbJvfGendfHJePXx7apiW6KmUfBPG3lqfErq06Puy5aPqDJ3PZsCxiDzLao6xEgQGBhBYxBFtbfuxMYNAFjkMbGjEEaAR0nQKCkgDFIydqFJkAgsYAxSOJyRSNAoJyAMUi5ygX+/9m7D2i5qnqP47+pt9/0QIBAIKQRSgidAEHhiQqKYgDpGsWOBQso+nxL5dnwWRCwYQDpiCCiiAXpJSTUhDSSEEhISL/9Tjvn7TkXLiQEcueemTsze39nrSwJ9+xz9v/zm6fR92OfKhNYmmnR5S3zdJs5DSTle8HuJyWHaKY5BeSkxrGqjcSqbCK2W2oByiClFub+CCCAwMAKUAYZWG+ehkC1C1AGCZkgZZCQgCxHAAEnBSiDOBk7QyOAgMUClEEsDpfREEDAOQHKIM5FzsBVIrDOnATyjQ2P6G+dL/bu+ISGMTqraYKOqB1VJVOwzXIIUAYphzrPRAABBEonQBmkdLbcGQEbBSiDhEyVMkhIQJYjgICTApRBnIydoRFAwGIByiAWh8toCCDgnABlEOciZ+AqELjVnALy3xtma7N5HUxjJKHTm8cHJ4GMjjdWwe7ZYrkFKIOUOwGejwACCBRXgDJIcT25GwK2C1AGCZkwZZCQgCxHAAEnBSiDOBk7QyOAgMUClEEsDpfREEDAOQHKIM5FzsAVLJA/DeT89Q/pnq6VwS4PqhmpS0ccRQmkgjOrxK1RBqnEVNgTAggg0H8ByiD9t2MlAi4KUAYJmTplkJCALEcAAScFKIM4GTtDI4CAxQKUQSwOl9EQQMA5AcogzkXOwBUq8Mf2pfr2xp7TQOqjcV005ECd0zRRkQrdL9uqXAHKIJWbDTtDAAEE+iNAGaQ/aqxBwF0ByiAhs6cMEhKQ5Qgg4KQAZRAnY2doBBCwWIAyiMXhMhoCCDgnQBnEucgZuMIEOA2kwgKxYDuUQSwIkREQQACBNwhQBuHrgAAChQhQBilEaxvXUgYJCchyBBBwUoAyiJOxMzQCCFgsQBnE4nAZDQEEnBOgDOJc5AxcQQK3tD8fnAbS4qU5DaSCcqn2rVAGqfYE2T8CCCCwpQBlEL4RCCBQiABlkEK0KIOE1GI5Aggg0CNAGYRvAgIIIGCXAGUQu/JkGgQQcFuAMojb+TN9eQQ4DaQ87q48lTKIK0kzJwIIuCJAGcSVpJkTgeIIUAYJ6cjJICEBWY4AAk4KUAZxMnaGRgABiwUog1gcLqMhgIBzApRBnIucgcss8MbTQBoicV009ECd3TRRkTLvi8fbI0AZxJ4smQQBBBDIC1AG4XuAAAKFCFAGKURrG9dSBgkJyHIEEHBSgDKIk7EzNAIIWCxAGcTicBkNAQScE6AM4lzkDFwmgTW5Tn11/cO6p2tlsIPDa3fUz4cfqZ3iDWXaEY+1VYAyiK3JMhcCCLgqQBnE1eSZG4H+CVAG6Z9b7yrKICEBWY4AAk4KUAZxMnaGRgABiwUog1gcLqMhgIBzApRBnIucgcsgcHP7Ev3PxsfV4qX12mkg55jTQPggUAoByiClUOWeCCCAQPkEKIOUz54nI1CNApRBQqZGGSQkIMsRQMBJAcogTsbO0AggYLEAZRCLw2U0BBBwToAyiHORM/AACjyX3qjLWp7V7R3Lg6dOqx2l/xs+TbvEGwdwFzzKNQHKIK4lzrwIIGC7AGUQ2xNmPgSKK0AZJKQnZZCQgCxHAAEnBSiDOBk7QyOAgMUClEEsDpfREEDAOQHKIM5FzsADIPBQ92r9unW+/t3Z80qYumhc3x5ykM5qmjAAT+cRrgtQBnH9G8D8CCBgmwBlENsSZR4ESitAGSSkL2WQkIAsRwABJwUogzgZO0MjgIDFApRBLA6X0RBAwDkByiDORc7AJRLwzX3v7nzRnATyjJ5IrQ+ekn8lzFnmdTCfGjRZI2J1JXoyt0VgSwHKIHwjEEAAAbsEKIPYlSfTIFBqAcogIYUpg4QEZDkCCDgpQBnEydgZGgEELBagDGJxuIyGAALOCVAGcS5yBi6yQNb39KeOpbq8ZZ6WZFqCuw+KJjWzeS+d2zzJ/HVNkZ/I7RB4ewHKIHxDEEAAAbsEKIPYlSfTIFBqAcogIYUpg4QEZDkCCDgpQBnEydgZGgEELBagDGJxuIyGAALOCVAGcS5yBi6SQJeX1R/aFuk35nUwq3OdwV2HxWr1CVMC+YgpgTRGEkV6ErdBoDAByiCFeXE1AgggUOkClEEqPSH2h0BlCVAGCZkHZZCQgCxHAAEnBSiDOBk7QyOAgMUClEEsDpfREEDAOQHKIM5FzsAhBTZ7Kf2udYFmmV/5v85/RsXqzatg9taZTRNUG4mFfALLEQgnQBkknB+rEUAAgUoToAxSaYmwHwQqW4AySMh8KIOEBGQ5Agg4KUAZxMnYGRoBBCwWoAxicbiMhgACzglQBnEucgbup8Aac/rH5S3P6vr2JcqfCpL/7BZv0mdMCeTUxnFKRKL9vDPLECiuAGWQ4npyNwQQQKDcApRByp0Az0egugQog4TMizJISECWI4CAkwKUQZyMnaERQMBiAcogFofLaAgg4JwAZRDnImfgAgXmptbpzs4X9JuW+b0r90wM0nmD9tWMxrEF3o3LESi9AGWQ0hvzBAQQQGAgBSiDDKQ2z0Kg+gUog4TMkDJISECWI4CAkwKUQZyMnaERQMBiAcogFofLaAgg4JwAZRDnImfgPgh0+znd3r5MV7ct1DPpDb0rJiaG6EuD99MJDWP6cBcuQaA8ApRByuPOUxFAAIFSCVAGKZUs90XATgHKICFzpQwSEpDlCCDgpABlECdjZ2gEELBYgDKIxeEyGgIIOCdAGcS5yBn4bQRWZNp0VftC3di2RK1euvfKfPnjdPMqmOl1O+OHQMULUAap+IjYIAIIIFCQAGWQgri4GAHnBSiDhPwKUAYJCchyBBBwUoAyiJOxMzQCCFgsQBnE4nAZDQEEnBOgDOJc5Ay8lYAnX//uWqmrWhfqvq5V5nc9n13iDaYAMl5nNI3X8FgdbghUjQBlkKqJio0igAACfRKgDNInJi5CAIFXBSiDhPwqUAYJCchyBBBwUoAyiJOxMzQCCFgsQBnE4nAZDQEEnBOgDOJc5Az8qsDGXLeua1+sa9sWaWW2I/i7MUV0bP0uOrNxgo6u31lR83s+CFSbAGWQakuM/SKAAAJvL0AZhG8IAggUIkAZpBCtbVxLGSQkIMsRQMBJAcogTsbO0AggYLEAZRCLw2U0BBBwToAyiHOROz/wnNRaXW1OAbmz8wWlfS/w2Dk4BWRccBLIyHi980YAVLcAZZDqzo/dI4AAAlsLUAbhO4EAAoUIUAYpRGsb11IGCQnIcgQQcFKAMoiTsTM0AghYLEAZxOJwGQ0BBJwToAziXOTODvyPzpf0w01PaGFmU6/Be+t31ammBHJs/WhnXRjcPgHKIPZlykQIIOC2AGUQt/NnegQKFaAMUqjYVtdTBgkJyHIEEHBSgDKIk7EzNAIIWCxAGcTicBkNAQScE6AM4lzkzg3c7mf07Q2zdWP7kmD2UbF6ndE0XmdwCohz3wVXBqYM4krSzIkAAq4IUAZxJWnmRKA4ApRBQjpSBgkJyHIEEHBSgDKIk7EzNAIIWCxAGcTicBkNAQScE6AM4lzkTg38ePdanbf+fr2UbQ/m/vaQg/SJQZOdMmBY9wQog7iXORMjgIDdApRB7M6X6RAotgBlkJCilEFCArIcAQScFKAM4mTsDI0AAhYLUAaxOFxGQwAB5wQogzgXuRMDZ3xPP9n8lC5reUaemXhcYpCuGDFdk5JDnZifId0WoAzidv5MjwAC9glQBrEvUyZCoJQClEFC6lIGCQnIcgQQcFKAMoiTsTM0AghYLEAZxOJwGQ0BBJwToAziXOTWD7ws06pPrPuPFqQ3KWKm/VjzJF1kTgRJRqLWz86ACOQFKIPwPUAAAQTsEqAMYleeTINAqQUog4QUpgwSEpDlCCDgpABlECdjZ2gEELBYgDKIxeEyGgIIOCdAGcS5yK0e+MrWBfrfTXPU7ec0MlanS0ccqSNqd7J6ZoZDYGsByiB8JxBAAAG7BCiD2JUn0yBQagHKICGFKYOEBGQ5Agg4KUAZxMnYGRoBBCwWoAxicbiMhgACzglQBnEucisHXpvt1HnrH9CD3auD+d5bv6suGT5Ng6I1Vs7LUAi8nQBlEL4fCCCAgF0ClEHsypNpECi1AGWQkMKUQUICshwBBJwUoAziZOwMjQACFgtQBrE4XEZDAAHnBCiDOBe5dQP/rXOFvrL+IbV4aTVHk7p42CE6qWGsdXMyEAJ9FaAM0lcprkMAAQSqQ4AySHXkxC4RqBQByiAhk6AMEhKQ5Qgg4KQAZRAnY2doBBCwWIAyiMXhMhoCCDgnQBnEucitGbjNlD++ueEx/bFjaTDTobU76JcjpmtUrN6aGRkEgf4IUAbpjxprEEAAgcoVoAxSudmwMwQqUYAySMhUKIOEBGQ5Agg4KUAZxMnYGRoBBCwWoAxicbiMhgACzglQBnEucisGnpNaq0+tvVerc52qiUT1tSFT9cnmvRWxYjqGQCCcAGWQcH6sRgABBCpNgDJIpSXCfhCobAHKICHzoQwSEpDlCCDgpABlECdjZ2gEELBYgDKIxeEyGgIIOCdAGcS5yKt64Izv6YebntCvW+fJM5OMSwzSFeY0kEnJoVU9F5tHoJgClEGKqcm9EEAAgfILUAYpfwbsAIFqEqAMEjItyiAhAVmOAAJOClAGcTJ2hkYAAYsFKINYHC6jIYCAcwKUQZyLvCoH7vKywetgbml/XnNT64IZPtk8Wf899KCqnIdNI1BKAcogpdTl3ggggMDAC1AGGXhznohANQtQBgmZHmWQkIAsRwABJwUogzgZO0MjgIDFApRBLA6X0RBAwDkByiDORV5VA7+YbdNvWuabEshStfuZYO9jEk36ybBpOrR2x6qahc0iMFAClEEGSprnIIAAAgMjQBlkYJx5CgK2CFAGCZkkZZCQgCxHAAEnBSiDOBk7QyOAgMUClEEsDpfREEDAOQHKIM5FXhUD39e1Sr9vXaB7ulYGr4OJmF9H1e2kmU2TdEz96OD3fBBAYNsClEH4ZiCAAAJ2CVAGsStPpkGg1AKUQUIKUwYJCchyBBBwUoAyiJOxMzQCCFgsQBnE4nAZDQEEnBOgDOJc5BU7cP7kj1vantes1oVamm0J9tkYSeiUpj31UVMC2SPRXLF7Z2MIVJIAZZBKSoO9IIAAAuEFKIOEN+QOCLgkQBkkZNqUQUICshwBBJwUoAziZOwMjQACFgtQBrE4XEZDAAHnBCiDOBd5xQ28LNNqTgF5botXwYyND9JHmyfq1MZxqo/GK27PbAiBShagDFLJ6bA3BBBAoHAByiCFm7ECAZcFKIOETJ8ySEhAliOAgJMClEGcjJ2hEUDAYgHKIBaHy2gIIOCcAGUQ5yKviIF9s4t/d76k37ct0P1dLyv/+6j59c66XTSzeZKm1+1cEftkEwhUowBlkGpMjT0jgAACby1AGYRvBwIIFCJAGaQQrW1cSxkkJCDLEUDASQHKIE7GztAIIGCxAGUQi8NlNAQQcE6AMohzkZd14DYvrRvaluiqtoVakW0L9jIomtSHzQkg+RLILvHGsu6PhyNggwBlEBtSZAYEEEDgdQHKIHwbEECgEAHKIIVobeNayiAhAVmOAAJOClAGcTJ2hkYAAYsFKINYHC6jIYCAcwKUQZyLvCwDL85s1pUtz+nWzmXq8rLBHiYmhgSvgvlQw1jV8SqYsuTCQ+0UoAxiZ65MhQAC7gpQBnE3eyZHoD8ClEH6o/aGNZRBQgKyHAEEnBSgDOJk7AyNAAIWC1AGsThcRkMAAecEKIM4F/mADZwzL3+5u/NFzWpdoIe71wTPjSmi4+pHmxLIXjq8dscB2wsPQsAlAcogLqXNrAgg4IIAZRAXUmZGBIonQBkkpCVlkJCALEcAAScFKIM4GTtDI4CAxQKUQSwOl9EQQMA5AcogzkVe8oE3eSld17ZIV7cu0su5juB5Q2O1OqNxvD5iTgLZMVZf8j3wAARcFqAM4nL6zI4AAjYKUAaxMVVmQqB0ApRBQtpSBgkJyHIEEHBSgDKIk7EzNAIIWCxAGcTicBkNAQScE6AM4lzkJRt4QXqjftP6nO7oWK5uPxc8Z5+aYZrZNFEnNuyhmkisZM/mxggg8LoAZRC+DQgggIBdApRB7MqTaRAotQBlkJDClEFCArIcAQScFKAM4mTsDI0AAhYLUAaxOFxGQwAB5wQogzgXeVEHzvie/taxQr9vW6A5qbXBvRORqN5bv5tmNk/SgTUji/o8boYAAtsXoAyyfSOuQAABBKpJgDJINaXFXhEovwBlkJAZUAYJCchyBBBwUoAyiJOxMzQCCFgsQBnE4nAZDQEEnBOgDOJc5EUZuMW8CubK1gW61rwO5pVcV3DPEbE6ndk0QWeb18GMjPMqmKJAcxME+iFAGaQfaCxBAAEEKliAMkgFh8PWEKhAAcogIUOhDBISkOUIIOCkAGUQJ2NnaAQQsFiAMojF4TIaAgg4J0AZxLnIQw/8YPdqfXHdA1qd6wzuNbVmuM5tnqz3N+we+t7cAAEEwgtQBglvyB0QQACBShKgDFJJabAXBCpfgDJIyIwog4QEZDkCCDgpQBnEydgZGgEELBagDGJxuIyGAALOCVAGcS7yUAN/e+Nj+p05EST/2Ts5TJcMO0z7mDIIHwQQqBwByiCVkwU7QQABBIohQBmkGIrcAwF3BCiDhMyaMkhIQJYjgICTApRBnIydoRFAwGIByiAWh8toCCDgnABlEOci79fAC9Ib9el192lJpkVRc4dPD9pHXx28vxKR/O/4IIBAJQlQBqmkNNgLAgggEF6AMkh4Q+6AgEsClEFCpk0ZJCQgyxFAwEkByiBOxs7QCCBgsQBlEIvDZTQEEHBOgDKIc5EXNLAnX1e0zNMlm59U2ve0S7xBl42YrgNrRhZ0Hy5GAIGBE6AMMnDWPAkBBBAYCAHKIAOhzDMQsEeAMkjILCmDhARkOQIIOClAGcTJ2BkaAQQsFqAMYnG4jIYAAs4JUAZxLvI+D7wy267Prrtfc1JrgzUnN+6pi4ceooZoos/34EIEEBh4AcogA2/OExFAAIFSClAGKaUu90bAPgHKICEzpQwSEpDlCCDgpABlECdjZ2gEELBYgDKIxeEyGgIIOCdAGcS5yPs08C3tz+tbGx5Tm5/RoGhSPx9xpP6rbnSf1nIRAgiUV4AySHn9eToCCCBQbAHKIMUW5X4I2C1AGSRkvpRBQgKyHAEEnBSgDOJk7AyNAAIWC1AGsThcRkMAAecEKIM4F/nbDtzipfSFdQ/on10rg+uOqB2lS4cfqZHxeqAQQKBKBCiDVElQbBMBBBDoo0CpyiCxJx6Qn0jI2+fQPu5ky8t2GlbXr3UsQgCB0gpQBgnpSxkkJCDLEUDASQHKIE7GztAIIGCxAGUQi8NlNAQQcE6AMohzkb/lwA92v6zzTBFkba5LtZGYvjX0IH2kaSJACCBQZQKUQaosMLaLAAIIbEegFGWQyCsrVfv9TyuS6lb28Hcrc/Kn5dcWVv6lDMJXF4HKFKAMEjIXyiAhAVmOAAJOClAGcTJ2hkYAAYsFKINYHC6jIYCAcwKUQZyL/E0Dd/s5fXfj47qqbWHws72Tw3TFiOnaI9EMDgIIVKEAZZAqDI0tI4AAAm8jUOwySL4AUvODzyq65sXep/rDd1T6o19Xbo+9+pwFZZA+U3EhAgMqQBkkJDdlkJCALEcAAScFKIM4GTtDI4CAxQKUQSwOl9EQQMA5AcogzkW+xcDzUhv0qfX3aXmmVTFF9LnB++r8QfspHom6DcP0CFSxAGWQKg6PrSOAAALbECh2GSR55f8qPuc/8nYYrcwHZipxyxWKblwbPDnzrlOV+eDH+5QDZZA+MXERAgMuQBkkJDllkJCALEcAAScFKIM4GTtDI4CAxQKUQSwOl9EQQMA5AcogzkUeDPxKtlO3dizVxZvmBr/fLd6kX444SlNrRrgJwtQIWCRAGcSiMBkFAQQQMALFLIPE7/+Lkjf8Qn6yRqkLL5M3ajdFujuVuPlyxR+5O/D2dt5d6Y9dFPzs7T6UQfh6IlCZApRBQuZCGSQkIMsRQMBJAcogTsbO0AggYLEAZRCLw2U0BBBwToAyiFuRP969Vr9vW6C7Olco43vB8Kc3jdd3hhysumjcLQymRcBSAcoglgbLWAgg4KxAscogkZVLVWdeD6NcTqlzv6Xc1KO2MI0984hqrvqR1NUuJZJKv3+mssecJOX/C8M2PpRBnP1KMniFC1AGCRkQZZCQgCxHAAEnBSiDOBk7QyOAgMUClEEsDpfREEDAOQHKIPZHnvJzur1jmX7fulDz0huCgWsjMX2gYQ99vHmSJiWH2o/AhAg4JEAZxKGwGRUBBJwQKEoZpLNNdRd/ShHzOpjsEccrfcYXt2kXadmg5KwfKrboyeDn3rh9lJr5DfmDh7/pesogTnz9GLIKBSiDhAyNMkhIQJYjgICTApRBnIydoRFAwGIByiAWh8toCCDgnABlEHsjX5Pr1KzWBbqubbE2ealg0F3iDTq7aaLONKeBDIrW2Ds8kyHgsABlEIfDZ3QEELBSIHQZxPdVc+nXFVswV/7Oe6jLvB5G8bc/ES7+n9uVvO23UiYtv65B6VM/p9whx27hSxnEyq8bQ1kgQBkkZIiUQUICshwBBJwUoAziZOwMjQACFgtQBrE4XEZDAAHnBCiD2Bf5Q92rgxLIPzpfUk5+MOC02lGaaU4BeVf9aEW17aO+7ZNgIgTcFKAM4mbuTI0AAvYKhC2DxO+6Xsk7Zkl1jeq66Ffyh+3QJ6zo6hVKXnmxoquWB9fnphyh1FnnS/VNwe8pg/SJkYsQGHAByiAhySmDhARkOQIIOClAGcTJ2BkaAQQsFqAMYnG4jIYAAs4JUAaxI/IuL6s/dizVVeZVMAszm4Kh6qNxfahhrM5t3ktjE4PsGJQpEEBguwKUQbZLxAUIIIBAVQmEKYNEFz+l2p99TTKng6TO+75yex1Y2OzZrBKmSJL41y3BPfxBQ5X+yAXKTZxKGaQwSa5GYMAEKIO8gXrj5jZdePGvtWbdJt1x1cW9P3lx1Vp94/u/1YIlK7TzjsP1na/N1JTJewY/pwwyYN9VHoQAAhYJUAaxKExGQQABBIwAZRC+BggggIA9ApRBqjvLldl2Xdm2QDe1LVGLlw6GGZNo0jmNE3Va0zg1RZPVPSC7RwCBggUogxRMxgIEEECg7AKRjWvlDx25zX30twwSadmg2os/pUjbZmWPO03pD8zs95zRJc8qOev7im5aF9wje9T7NPxzF/T7fixEAIHSCVAGedW2o7Nbp336O5p+2BTd9+jTW5RBzjrvYk07aB997PTjdd8jT+l/f3Gt7r7hEiXiMcogpftucmcEELBYgDKIxeEyGgIIOClAGcTJ2BkaAQQsFaAMUp3B3te1Sr83r4K5p2ulPDNC/sUvR9ftrI82TdQ7zatgeBFMdebKrhEohgBlkGIocg8EEECgxALptGLzZys2917Fnn1UkXRKmePPVOaEc9704P6WQWp/8iVFn58nb9x+6j7/kvADdbUref3PFJ9zX3CvwTc/GP6e3AEBBIouQBnkVdLOrm6t39gS/Pqfn1zdWwbZsKlV7z79q3rkzssVj8WCq2ec+21d8NnTdNCUiZRBiv6V5IYIIOCCAGUQF1JmRgQQcEmAMohLaTMrAgjYLkAZpHoSbvczuqXtec0yr4JZmm0JNt4USeiUpj31saa9tJs5EYQPAgggQBmE7wACCCBQmQKRVHdQ/Ig9eb+i8x4zBZCeU93e+PGHj1L69C8oN+mA3r/dnzJI4k+/VeKfN8tvHqrub1wRvN6lWJ/4nHsVfeYRDf/qd4p1S+6DAAJFFKAMshXmE88u3qIM8sSzS/Sd/7tat8/6Xu+VX/nOFTpk6iSdfMLRWre5u4hxcCsEEKgqAf7Rqn7HlYxFVVsTU2tnpt/3YKFNAvwfk01pMoubAs31caXSOaWyvpsATI0AAghYJJAvgwxrqtH61pRFU9k1yrJMq367eb55Fczzavd6/jvV+OQgzRy0l041r4JpiMbtGphpEBgQAXv/HFtfEw9OB+pIZQdEkocgUHUC9v6ff9VF4cSGu7tMccKc/DHXFEDmPya9VgAx/zC6N2GK/KlHyTvgSEUyaUX/8FNFnzXXmI938DuUO/Wzpvk7WEOba7S5PS3P69uXN/L0w4pf9t/m6LiIsl/7ufyxe5WEesTg2pLcl5sigEA4AcogW/ltXQZ5eM48/fy3t+qmX3+798qLfvA7jR87WuecfJzS2fzhm3wQQMBJgb79WctJmu0NHYlKsfwfPnMgbs/KhZ/n/x8OfBBAoLoFYqbkl/8fIXyff1+v7qsr/BYAACAASURBVCTZPQIIINAjkIhHleF/76ior0P+P2H/1rpCl6+fp3+1rVT+9+a/Vun45jH6zPDJOqZpl4raL5tBoNoEbP5jbNT8m0XE/BfvHP8bTLV9LdnvQAnwv0sNlLS7z+nuVHbOQ8rNvle5p025wxQ9gk88odg+Byl28HTFDjIFkPrGNxnlZt+n9FU/k795Q/DzxIc/qbp3naj8H9X78r/AeOvWqPsC86oZU0JJmrXx959RshyS5r9D8EEAgcoToAyyVSZbl0GenLdE3/zhlfrrH37Qe+Xnv/ULHXnIvsHJIC9v6Kq8VNkRAgggUOECvCamwgNiewgggECBArwmpkAwLkcAAQQqWIDXxFRWOG1eWje0LdFVbQu1ItsWbG5wtEYfbhynjzVP0k7xhsraMLtBAIGKE+A1MRUXCRtCAAEHBCJdHYo+/ZDiTzyg2IK5UrbnNDc/mZS318HKTj1C3j6Hya+t375GV7uSf/qd4g/+Nbg2tvt4dZ39NWV33O3t15rSSd0Pz1Nk1bLgNTOpz7/+/+fc/kMLv2KnYXWFL2IFAgiUXIAyyFbEW5dBNrW06dhTvqyH7vileaVBMrj6+LMu1He/NlNT9xlPGaTkX1EegAACNgpQBrExVWZCAAGXBSiDuJw+syOAgG0ClEEqI9GlmRb9tmW+/ti5TF1ez6sd9koO1UeaJuhDjXuqNhKrjI2yCwQQqHgByiAVHxEbRAABWwRMaSP+5IOKPWkKIAufMAWQnj/D+TV1yu1zsHL7m1fATD7Y/L5/r1OJLlug5NU/VHTtKnNEXEyZd3xQ2fed85b3S/7hJ4o//Hf5Q0eq66JfSfVNJZWmDFJSXm6OQL8FKINsRbd1GST/4499+Uc6YN8JOveME3T3vbP189/dqruu+6Hi5h1enAzS7+8eCxFAwGEByiAOh8/oCCBgpQBlECtjZSgEEHBUgDJIeYPvNMWP/9k0W9e1Le7dyLvrd9W5zXvp0Nody7s5no4AAlUpQBmkKmNj0wggUC0CHW2KP2UKIE/cr9iiJ2XeyRXs3K9rkLfvYcruf6Ryex1o3sPY8w+bh/6YE0aG/Odmpe64NiibeENGKHPq55Tb7/Atbh177F+queqH5hiRmLouvEz+LmNDP3p7N6AMsj0hfo5AeQQog7zq/q8H5uor37nC/Du0b96Lm1MiEdfuo3fUbb//nla/skEXXPxrzV/0gkbvNFIXX/hxTZ4wJlhJGaQ8X1yeigAC1S1AGaS682P3CCCAwNYClEH4TiCAAAL2CFAGKV+Wj3ev1efX368Xs+3BJs4btK/OaZ6oUbE+HB9evm3zZAQQqHAByiAVHhDbQwCB6hPoaDWvfzHlj/wpIIuekrxXCyANzUEpI5cvgEycKsXjJZlthyG12rBgseKzzCkhL/YUiPOFk/RZX5E/eJgiK5cGr4fJv5omffoXlD3yhJLsY+ubUgYZEGYegkDBApRBCibbcgFlkJCALEcAAScFKIM4GTtDI4CAxQKUQSwOl9EQQMA5AcogAx952vf0g01z9dvW+fLM48fGB+mKkdM12bwWhg8CCCAQVoAySFhB1iOAAAJSpG2zYuYEkPic+xRdbAogr378psGmADJNuammADLpgAGhypdB1reklPN8xe+7Q4nbrlQk1Sk/mVT22FMUf+yfimx4RblDjlXqIxcMyJ7yD6EMMmDUPAiBggQogxTE9eaLKYOEBGQ5Agg4KUAZxMnYGRoBBCwWoAxicbiMhgACzglQBhnYyOenN+rTa+/T0myLoubRHx80WV8ffICSkfzv+CCAAALhBSiDhDfkDggg4KZAZPN68/qXBxR/8n5Fn5/Xi5A/fSM3dbqypgTijd93wHHeWAbJPzy/z+QNv1DsmUd69+KNGqPuC38pJWsGbH+UQQaMmgchUJAAZZCCuN58MWWQkIAsRwABJwUogzgZO0MjgIDFApRBLA6X0RBAwDkByiADE3nWnAbys5ZndOnmp5WVr9HxRl0+Yrqm1owYmA3wFAQQcEaAMogzUTMoAggUQSCyapkpVTyq+NMPKbqi5xUs+Y8/bAdl9z9K3hRzCsjYyUV4Uv9vsXUZ5LU75YsryZsulVJd6v76FfJ32KX/D+nHSsog/UBjCQIDIEAZJCQyZZCQgCxHAAEnBSiDOBk7QyOAgMUClEEsDpfREEDAOQHKIKWPfGmmRZ9ad5+eM6eC5D9nNY7Xt4cerLpoad4rX/qJeAICCFSyAGWQSk6HvSGAQCUI5E/9yJ+qEX/6QUXWvty7JX/kTsrtb04AMQUQb8yESthqsIe3KoMEP+xsU/TlFfL23HvA90sZZMDJeSACfRKgDNInpre+iDJISECWI4CAkwKUQZyMnaERQMBiAcogFofLaAgg4JwAZZDSRe6ZE0B+1TJPl2x+UilzMsiIWJ0uHX6kjqzbqXQP5c4IIOC8AGUQ578CACCAwNYC2YyiC+aa8sfDij37qCKtm3qv8HYdZ8ofRwQngHijdqtIu7ctg5Rxx5RByojPoxF4GwHKICG/HpRBQgKyHAEEnBSgDOJk7AyNAAIWC1AGsThcRkMAAecEKIOUJvKXsu36zLp79URqffCADzWM1XeHHaxB0YF7j3tpJuOuCCBQ6QKUQSo9IfaHAAIDIRDp6lA0f/rHMw8rOn+OIuZVKsEnGg1O0cjud4Q5BeQI+UMq/5V9lEEG4hvDMxCwR4AySMgsKYOEBGQ5Agg4KUAZxMnYGRoBBCwWoAxicbiMhgACzglQBil+5Fe3LdR3N81Rl5fVYFP++OnwI/Su+tHFfxB3RAABBLYhQBmErwUCCLgsEDOvgInfebVii57agiG398HK7TdNWVMAUUNzVRFRBqmquNgsAmUXoAwSMgLKICEBWY4AAk4KUAZxMnaGRgABiwUog1gcLqMhgIBzApRBihf5mlynzlt3vx7uXhPc9J11u+hnw6dpmHk9DB8EEEBgoAQogwyUNM9BAIFKE4isX626739W6myTX1Or3D6HyjMFkHwRxK+tr7Tt9nk/lEH6TMWFCCBgBCiDhPwaUAYJCchyBBBwUoAyiJOxMzQCCFgsQBnE4nAZDQEEnBOgDBI+8hYvpds6lusXm5/WK7kuNUeT+u7QQzSjcWz4m3MHBBBAoEAByiAFgnE5AgjYIZBOqe5Hn1dk1bKgBJL6zHftmMtMQRnEmigZBIEBEaAMEpKZMkhIQJYjgICTApRBnIydoRFAwGIByiAWh8toCCDgnABlkP5H/qg5AeTatsX6W+cLSvlecKPDa3fUpSOO0o6x6v2nT/svwkoEEKgEAcoglZACe0AAgYEWqPnVtxV7+mH5w0ep6xuXS3WNA72Fkj2PMkjJaLkxAlYKUAYJGStlkJCALEcAAScFKIM4GTtDI4CAxQKUQSwOl9EQQMA5AcoghUWePwXkprbndV37Yj2faQkWxxXRuxt21TlNk4IyCB8EEECgnAKUQcqpz7MRQKAcAvG7rlfyjlnm1TB1Sn39Mnk7jC7HNkr2TMogJaPlxghYKUAZJGSslEFCArIcAQScFKAM4mTsDI0AAhYLUAaxOFxGQwAB5wQog/Qt8se6X9F15hSQv5pTQLr9XLBox1idTm+aoLMax2tknJNA+ibJVQggUGoByiClFub+CCBQSQKxebNVc9lFwZZSn71Yub0PrqTtFWUvlEGKwshNEHBGgDJIyKgpg4QEZDkCCDgpQBnEydgZGgEELBagDGJxuIyGAALOCVAGeevIW720bm43p4CYEsjizObeC/Onf5zdNFHvqd9V8UjUue8MAyOAQGULUAap7HzYHQIIFE8gsm61ai/+pCKpLmWOP0uZE84u3s0r6E6UQSooDLaCQBUIUAYJGRJlkJCALEcAAScFKIM4GTtDI4CAxQKUQSwOl9EQQMA5Acogb4788e61urZtke58wykgjZGEZjSO1czmSRqbGOTc94SBEUCgegQog1RPVuwUAQT6LxDp7lTNDz6n6CsvKTf5YHMqyPek/B9sLfxQBrEwVEZCoIQClEFC4lIGCQnIcgQQcFKAMoiTsTM0AghYLEAZxOJwGQ0BBJwToAzSE3n+1S/5U0BmtS7Y4hSQcab4MbN5L81oGKv6aNy57wcDI4BA9QlQBqm+zNgxAggUKOD75tUw31Rs/mx5O4xW6sJfyq+195V9lEEK/H5wOQKOC1AGCfkFoAwSEpDlCCDgpABlECdjZ2gEELBYgDKIxeEyGgIIOCfgehlkTa5TvzcFkPyrYDZ7qSD/hHn1y3vqd9M5TRN0qHklDB8EEECgmgQog1RTWuwVAQT6I5C4Y5YSd10vv65B3V+/Qv6IUf25TdWsoQxSNVGxUQQqQoAySMgYKIOEBGQ5Agg4KUAZxMnYGRoBBCwWoAxicbiMhgACzgm4WgbJvwrmyrbn9JeOF3ozHxGrCwogZzSO18i4vf90qXNfcgZGwDEByiCOBc64CFSaQC6n6HOPKzH3PkUWPaXcO09SxvxSLFaUncaeekg1v/6f4JUwqc//QLmJU4ty30q+CWWQSk6HvSFQeQKUQUJmQhkkJCDLEUDASQHKIE7GztAIIGCxAGUQi8NlNAQQcE7ApTJIxvf0l87l+l3Lc3o6vaE362nm9I9zmibpuPrRiptTQfgggAAC1SxAGaSa02PvCFSpgJdTzBQ/YqYAEn/yQamzbYtBvJE7K3Pa50MXN6KrlqvmR59TJJ1W+gMzlT3utCoFK2zblEEK8+JqBFwXoAwS8htAGSQkIMsRQMBJAcogTsbO0AggYLEAZRCLw2U0BBBwTsCFMsjGXLeuaVtofi3SK7muIOPGSEIzGsdqZvMkjU0Mci53BkYAAXsFKIPYmy2TIVBpAtHFT5sCyL1KzLlviwJIbs+9ldv/KPkNjUrefqUim3tKuLl9D1P6lM/KH7ZD4aN0tavufz+jyPrVyk49Sulzv1X4Pap0BWWQKg2ObSNQJgHKICHhKYOEBGQ5Agg4KUAZxMnYGRoBBCwWoAxicbiMhgACzgnYXAZZnNmsX7XM1+0dS5Uyp4LkPxMSg3VO80Sd3LCn6qNx5/JmYAQQsF+AMoj9GTMhAuUUiC5boPjc/5gSyP2KtLx60pr5A6U3drIpaUxX7oDp8puHvL5Fc4pH4u4blPjnzVImLcUTyvzXycGpHn5Nbd9G8TzV/OJCc/rIk/J2GqPuC34pJWv6ttaCqyiDWBAiIyAwgAKUQUJiUwYJCchyBBBwUoAyiJOxMzQCCFgsQBnE4nAZDQEEnBOwsQzyj86X9KvWeXqs+5XePI+v3y04BeRQ80oYPggggIDNApRBbE6X2RAoj0B0xeKeV8CYU0AiG9f2biI4ASRfAJl6pPxBw952c5ENryh582WKPfNIcJ03ZISyJ31C2QOP3u5QiT9eocS//2ROGmlS6hu/kjd05HbX2HQBZRCb0mQWBEovQBkkpDFlkJCALEcAAScFKIM4GTtDI4CAxQKUQSwOl9EQQMA5AVvKIGuznbq+fbGua1uil3MdQY47xOp0RtMEndU4XiPj9c5ly8AIIOCmAGUQN3NnagSKLRBb9pwpbjyq2JP3KbL25d7b58wJILkpRypnShz+4LcvgGxrT7Hn5ih5w8/N617WBD/2xu+r9KnnBSd+bPP62f9WzawfBD/q/uKP5E3Yv9ijVvz9KINUfERsEIGKEqAMEjIOyiAhAVmOAAJOClAGcTJ2hkYAAYsFKINYHC6jIYCAcwLVXgZ5oOtlXWtKIHd2vNCb3aG1O5gCyAR9oHEP5/JkYAQQQIAyCN8BBBDol0A2a17D8oRiTz0cnN4Rad3Ye5ugABK8Auao7Z4A0qdnm2cl7rlV8b9dp0iqS4pGlT3yBKVP/KhU19h7i+iLS1T74y9I2YwyH/qkMsfO6NPtbbuIMohtiTIPAqUVoAwS0pcySEhAliOAgJMClEGcjJ2hEUDAYgHKIBaHy2gIIOCcQDWWQTZ5Kd3S9rz+0LZIy7KtQWbN0aRmNI7VR5omamxikHM5MjACCCDwmgBlEL4LCCDQV4FId6dizz6m6DMPKTbvceV/H3yiMeXG76fc/kcot9/hxSmAbGNTkdZNSv7x14o9/u/gp35DszKmEJKd9l5FOlpV+71PBqWU7IHTlf7YN/s6lnXXUQaxLlIGQqCkApRBQvJSBgkJyHIEEHBSgDKIk7EzNAIIWCxAGcTicBkNAQScE6imMsjc1Dpd07YwOAWk288FWe1TM0xnm1NAPtiwh+qicefyY2AEEEBgawHKIHwnEEDg7QQim9eb0z9M+cOc/hFbMHeLS3P7HqbsqwWQN57QUWrR2PPzlLjpl4quXBo8yhs9VhHPV2TVMvPXe6r7Kz+XkslSb6Ni708ZpGKjYWMIVKQAZZCQsVAGCQnIcgQQcFKAMoiTsTM0AghYLEAZxOJwGQ0BBJwTqPQySKeX1a0dS4NTQOane44rr43E9P6G3XW2OQVk/5rhzmXGwAgggMDbCVAG4fuBAAJbC0RXLVf02Ud7CiDLF/T+2K+tl2dO/sjuf6S8iVPl19SWFS9+/1+UuGOWORWkLdiH3zhIqa9fLm/oyLLuq9wPpwxS7gR4PgLVJUAZJGRelEFCArIcAQScFKAM4mTsDI0AAhYLUAaxOFxGQwAB5wQqtQyyOLNZs1oX6E/ty9TuZ4Jc9og366ymCTq1aU8NitY4lxUDI4AAAn0RoAzSFyWuQcAdgcS//qjErb/uHdhvHqqsKYB4U6Ypt9eBlQdhXg+TvO13ij90l7rP/z954/apvD0O8I4ogwwwOI9DoMoFKIOEDJAySEhAliOAgJMClEGcjJ2hEUDAYgHKIBaHy2gIIOCcQCWVQVLm1S93dr6ga1oXaU5qbZBFXBG9u2HXoARyRO1OzuXDwAgggEChApRBChXjegTsFYjPuU/JK78XDJg59uSeAsjYyVUxcKRts/ymwVWx11JvkjJIqYW5PwJ2CVAGCZknZZCQgCxHAAEnBSiDOBk7QyOAgMUClEEsDpfREEDAOYFKKIOsyLTpGvMamJval2iTlwoyGBWr15lN43V643iNjNc7lwsDI4AAAv0VoAzSXznWIWCXQPT5ear96VckL6f0mecrO+09dg3o0DSUQRwKm1ERKIIAZZCQiJRBQgKyHAEEnBSgDOJk7AyNAAIWC1AGsThcRkMAAecEylUGycnXPzpfMiWQhXqg62XzO5kzQKTpdTvrbHMKyLH1oxUL/g4fBBBAAIFCBCiDFKLFtQjYKRBdtVw1P/6iIqlOZd57pjLvO8fOQR2ZijKII0EzJgJFEqAMEhKSMkhIQJYjgICTApRBnIydoRFAwGIByiAWh8toCCDgnMBAl0HW5Dp1Xdti3WB+rTZ/nf8MjdXq1IY9g1fB7JZoci4DBkYAAQSKKUAZpJia3AuB6hOIbN6g2u9/WpHWTcodfIxSH72w+oZgx1sIUAbhC4EAAoUIUAYpRGsb11IGCQnIcgQQcFKAMoiTsTM0AghYLEAZxOJwGQ0BBJwTGIgySP7Uj/u7VgWvgvmnOQ0kfypI/nNgzUid3TxBJ9SPUU0k5pw9AyOAAAKlEKAMUgpV7olAdQhEujtV84PPKfqK+fPW5IOU+sx3pSh/xqqO9N56l5RBqj1B9o/AwApQBgnpTRkkJCDLEUDASQHKIE7GztAIIGCxAGUQi8NlNAQQcE6glGWQTV5KN7Yv0bWmBPJCpi2wbYwk9MHGPXSOOQVkUnKoc94MjAACCJRagDJIqYW5PwIVKpDNqObnX1Ps+XnyxkxQ95f+T0omK3SzbKsQAcoghWhxLQIIUAYJ+R2gDBISkOUIIOCkAGUQJ2NnaAQQsFiAMojF4TIaAgg4J1CqMshNpgTyrQ2PqcPPBqaTkkNMAWRiUATJF0L4IIAAAgiURoAySGlcuSsCFS3g+6r51bcVe+YR+SNGqevCy6R6Xr1X0ZkVsDnKIAVgcSkCCIgySMgvAWWQkIAsRwABJwUogzgZO0MjgIDFApRBLA6X0RBAwDmBYpdBXsl26ssbHtJ/zGth8p8ZjWN1ZuMEHVQ70jlbBkYAAQTKIUAZpBzqPBOB7QtENm9Q7NlHlJt0oPzhO25/QQFXJG/4heL3/0V+02B1f+3Sot+/gK1waQkEKIOUAJVbImCxAGWQkOFSBgkJyHIEEHBSgDKIk7EzNAIIWCxAGcTicBkNAQScEyhmGeS2jmX6pjkNZLN5PUz+JJArRkzXuMRg50wZGAEEECinAGWQcurzbAS2FIiufkHRpx9R/KkHFV2xuPeH2aNPVOb4s+Q3DgpNlvjnLUr86Tfya+rU/eWfyh89NvQ9uUFlCVAGqaw82A0ClS5AGSRkQpRBQgKyHAEEnBSgDOJk7AyNAAIWC1AGsThcRkMAAecEilEG2WTKH+eve1D/6HpJUSP4yea9dcGQqUpE8r/jgwACCCAwkAKUQQZSm2ch8GaB2NL5pgDysOJPP6jI2pd7L/Br6uXtvJtiyxYEfy9f3sgcd6py7zhJfm1dvyjjj/9Hyd//b7C2+4s/ljdhSr/uw6LKFqAMUtn5sDsEKk2AMkjIRCiDhARkOQIIOClAGcTJ2BkaAQQsFqAMYnG4jIYAAs4JhC2D3NO5Ul/c8KA25Lo1KlavX408WgfW8EoY575IDIwAAhUjQBmkYqJgI64IZLOKLXpCsaceVuyZRxRp3dg7uT94mHL7Hq7clGnKjTdFjVhMkVXLlLztd4rNfzy4zm8eosx7z1T2iOODn/f1E31+nmp/+hXJyyn18W8qd8D0vi7luioToAxSZYGxXQTKLEAZJGQAlEFCArIcAQScFKAM4mTsDI0AAhYLUAaxOFxGQwAB5wT6WwZp9zO6aMOj+mP70sBsRsNYfW/YIWqKJp0zZGAEEECgkgQog1RSGuzFVoFId6di82abE0AeCv41//vXPt6o3eTtd7iy+02TN2bCWxJEzQkhyZt+qeiLPa+P8UfupMz7Zip74PZLHdFVy1Xz4y8qkupU+tTPKf/aGT72ClAGsTdbJkOgFAKUQUKqUgYJCchyBBBwUoAyiJOxMzQCCFgsQBnE4nAZDQEEnBPoTxnk4e41Om/dfVqT69IgU/64ZPg0vbd+N+fsGBgBBBCoRAHKIJWYCnuyQSDSsiE4+SNmXgETW/SkZE4ECT7mD1O53SfJM6d/ZKdOlz9sh4LGzd8zecdVwYkh+Y+363ilP/QJeeP32+Z9Ips3qPb7nzYnkGxS5tiTlTHX8rFbgDKI3fkyHQLFFqAMElKUMkhIQJYjgICTApRBnIydoRFAwGIByiAWh8toCCDgnEAhZZAuL6vvbnpc17Qtkm+kjqgdpUuHH6mR8Xrn3BgYAQQQqFQByiCVmgz7qkaByCsrFTenfwQngJiTPHo/8YSyk6bKy78CxpwC4jcNDjee7ys25x4l/3K1IutWB/fK7XWgMieZUsjOu79+78421f7oC4q+8pIpnhyltHk9TL6MwsduAcogdufLdAgUW4AySEhRyiAhAVmOAAJOClAGcTJ2hkYAAYsFKINYHC6jIYCAcwJ9LYM8kVqnz5jTQF7Ktqs2EtNFQw7UzOZJznkxMAIIIFDpApRBKj0h9lfpAtEXFr1aAHlY0dUrXt9uXaNyex+i7JTD5U0+WH5NbfFHyeUUf+guJf52rfInkeQ/uYOOUfr9H5E/eJhqf/Il5feXmzBFqfN+IMVixd8Dd6w4AcogFRcJG0KgogUog4SMhzJISECWI4CAkwKUQZyMnaERQMBiAcogFofLaAgg4JzA9sogad/TjzY9oV+3zpNndPZODtMVI6Zrj0Szc1YMjAACCFSDAGWQakiJPVaaQGzBXMWeMqd/PPOw8q9hee3jDR4evP4lt+9hyk06YOC2nU4pcd+flfj7jZI5DST/8XYao+jLL8gbvadS5/9Efi0nsw1cIOV9EmWQ8vrzdASqTYAySMjEKIOEBGQ5Agg4KUAZxMnYGRoBBCwWoAxicbiMhgACzgm8VRlkcWazrmldqBval6jbzwUunx+0ry4YMtU5IwZGAAEEqkmAMkg1pcVeyyUQ6e5SdP5sxZ95RFHzK9Ld2bsVb9Ruyr1aAPHGTCzXFnue29Wu5N03K/afWxVJp+UPH6Xur/0i/GtpyjsVTy9QgDJIgWBcjoDjApRBQn4BKIOEBGQ5Agg4KUAZxMnYGRoBBCwWoAxicbiMhgACzgm8sQySPwXkro4VuqZ9oR7tfqXXYpd4gy4zp4EcWDPSOR8GRgABBKpNgDJItSXGfgdKINK22Zz88Yg5AeRBxebN3uKxubGT5ZnTP7JTjpQ/cqeB2lKfnxNp3aTE3TcoM/1Es7+d+7yOC+0QoAxiR45MgcBACVAGCSlNGSQkIMsRQMBJAcogTsbO0AggYLEAZRCLw2U0BBBwTiBfBkk1ZPWTl57Wje3Pa32uq9fg0NoddGbTBB1fP0bJSNQ5GwZGAAEEqlGAMkg1psaeSyUQWb9GcVP+iD5tXgGzdL7k+z2PSiSVnbi/KYAcrtx+h3PSRqkC4L5FEaAMUhRGboKAMwKUQUJGTRkkJCDLEUDASQHKIE7GztAIIGCxAGUQi8NlNAQQcEbAk697OleaU0AW6T/mX71XJx8SrdGMxrE6p2midk80O+PBoAgggIAtApRBbEmSOforEF2xuOcEEFMAia5a/vpt6hqV2+cQZfebJm/yQfJravv7CNYhMKAClEEGlJuHIVD1ApRBQkZIGSQkIMsRQMBJAcogTsbO0AggYLEAZRCLw2U0BBCwXiB/8sf17Ut0Xdsircx29M7LKSDWR8+ACCDgiABlEEeCZszXBbycokueVTxf/nj6YUU3ru39mTdkhDxz8kf+9I/cuP2kWAw5BKpOgDJI1UXGhhEoqwBlkJD8lEFCArIcAQScFKAM4mTsDI0AAhYLUAaxOFxGQwABawUe7l6jP5gCyF2dK5Txe84ByZ8CdJ3JzgAAIABJREFUcrI5BeQro6eooSNp7ewMhgACCLgkQBnEpbTdnjX23BzFZ//bnALyqNTV3ovh7TI2OAEkt+9h8sZMdBuJ6a0QoAxiRYwMgcCACVAGCUlNGSQkIMsRQMBJAcogTsbO0AggYLEAZRCLw2U0BBCwSqDNS+vm9qWmBLJQSzItvbO98RSQmmhUOw6p0+qNXVbNzjAIIICAqwKUQVxN3q254/f+Wcmbftk7dG7s5OAEkOzU6fKH7eAWBtNaL0AZxPqIGRCBogpQBgnJSRkkJCDLEUDASQHKIE7GztAIIGCxAGUQi8NlNAQQsEJgfnqDZpkCyO0dy9XlZYOZ8qeAzDCngJzTNFG7J5p754xERBnEitQZAgEEEOgRoAzCN8F2gfj9dyp5w8+DMdMnf0bZQ46RGl7/s43t8zOfewKUQdzLnIkRCCNAGSSMnllLGSQkIMsRQMBJAcogTsbO0AggYLEAZRCLw2U0BBCoWoFuP6c/dyzTNa0L9ZQpg7z2eeMpIMlI9E3zUQap2sjZOAIIILBNAcogfDFsFoiZ18LUzPqBZP4Ak/r4N5WbepTN4zIbAoEAZRC+CAggUIgAZZBCtLZxLWWQkIAsRwABJwUogzgZO0MjgIDFApRBLA6X0RBAoOoElmVadXXbAt1iXgfTYl4Lk/+81Skg2xqOMkjVRc6GEUAAgbcVoAzCF8RWgaAIctUPJd9X6qMXKnewORGEDwIOCFAGcSBkRkSgiAKUQUJiUgYJCchyBBBwUoAyiJOxMzQCCFgsQBnE4nAZDQEEqkIg43v6e+eL+oN5FcxD3Wt697y9U0C2NRxlkKqInE0igAACfRagDNJnKi6sIoHYE/er5nffC4og6TPPV3bae6po92wVgXAClEHC+bEaAdcEKIOETJwySEhAliOAgJMClEGcjJ2hEUDAYgHKIBaHy2gIIFDRAi9nO3Rt+2Ld0LZYa3NdwV4LOQVkW8NRBqnoyNkcAgggULAAZZCCyVhQ4QKxZx5Rza//R/I8iiAVnhXbK40AZZDSuHJXBGwVoAwSMlnKICEBWY4AAk4KUAZxMnaGRgABiwUog1gcLqMhgEBFCjzY/bJmtS4MTgN57XNI7Q46q2mCPtiwR6g9UwYJxcdiBBBAoOIEKINUXCRsKIRAbP5s1Vz+36YIklP6tM8re9T7QtyNpQhUpwBlkOrMjV0jUC4ByiAh5SmDhARkOQIIOClAGcTJ2BkaAQQsFqAMYnG4jIYAAhUlkD8B5HetC7QwsynYV3M0qVMb9wxKIGMTg4qyV8ogRWHkJggggEDFCFAGqZgo2EhIgeiiJ1X7y29I2azSMz6t7DEnhbwjyxGoTgHKINWZG7tGoFwClEFCylMGCQnIcgQQcFKAMoiTsTM0AghYLEAZxOJwGQ0BBMousDbbqVltC4PXwWzMdQf7mZAYrJnNkzTDFEFqI7Gi7pEySFE5uRkCCCBQdgHKIGWPgA0UQSAoglz2TSmTVvoDM5U97rQi3JVbIFCdApRBqjM3do1AuQQog4SUpwwSEpDlCCDgpABlECdjZ2gEELBYgDKIxeEyGgIIlE3gidQ6cwrIc/pb5wplfE8Rs5N31o/WuU2TdGTdTiXbF2WQktFyYwQQQKAsApRBysLOQ4soEH1+nmp/cUFQBMm890xl3ndOEe/OrRCoPgHKINWXGTtGoJwClEFC6lMGCQnIcgQQcFKAMoiTsTM0AghYLEAZxOJwGQ0BBAZUIGtKH3d2vKAr257TE6n1wbMbIwmd0rSnPt60l3ZLNJV8P5RBSk7MAxBAAIEBFaAMMqDcPKzIAtHlC1Tzs68qkk4p+86TlD7500V+ArdDoPoEKINUX2bsGIFyClAGCalPGSQkIMsRQMBJAcogTsbO0AggYLHAkMakutJZdac9i6dkNAQQQKB0Apu8lK5pXahrzOtg1uS6ggftFm/SR82rYE5rGhcUQgbqQxlkoKR5DgIIIDAwApRBBsaZpxRfILpisWp++hVFUl3KHHWCMqd9ofgP4Y4IVKEAZZAqDI0tI1BGAcogIfEpg4QEZDkCCDgpQBnEydgZGgEELBagDGJxuIyGAAIlFVhvih8Xb5qrm9uf733OtNod9fHmyXqXeSVMOT6UQcqhzjMRQACB0glQBimdLXcunUBQBPn51xTp6qAIUjpm7lylApRBqjQ4to1AmQQog4SEpwwSEpDlCCDgpABlECdjZ2gEELBYgDKIxeEyGgIIFF2gy8vqL53LdX3bEj2eWtt7//wJIPlXwUxMDin6Mwu5IWWQQrS4FgEEEKh8AcoglZ8RO9xSILJqmWp/cn5QBMke/m6lz/oyRAgg8AYByiB8HRBAoBAByiCFaG3jWsogIQFZjgACTgpQBnEydoZGAAGLBSiDWBwuoyGAQNEEnk5v0E1ti/XH9qXq8LPBfUfF6nVW0wSd3TxRQ6I1RXtWmBtRBgmjx1oEEECg8gQog1ReJuzorQWia15UzSVfVKSjTbmDjlHqoxdI+T+c8EEAgV4ByiB8GRBAoBAByiCFaG3jWsogIQFZjgACTgpQBnEydoZGAAGLBSiDWBwuoyGAQCiBdj+jP7Uv03WmBDLPlEHyn2Qkal4Bs6vOaByvI+t2UqX9vzcog4SKnMUIIIBAxQlQBqm4SNjQVgKRts2KPfuoYvMeU3TxM6YI0tpTBJl5IVYIILANAcogfC0QQKAQAcoghWht41rKICEBWY4AAk4KUAZxMnaGRgABiwUog1gcLqMhgEC/BB7vXqvr2hfrzs4XlH8tTP6zZ2KQTm8cp1PM62Aq5RSQbQ1HGaRfkbMIAQQQqFgByiAVG43TG4u+sDAof8TmzVZ0xeItLLLT3qP0mec77cPwCLydAGUQvh8IIFCIAGWQQrS2cS1lkJCALEcAAScFKIM4GTtDI4CAxQKUQSwOl9EQQKDPApu8lG5pe17XmxLIkkxLsK42EtMJDWOCU0AOrt2hz/cq54WUQcqpz7MRQACB4gtQBim+aSXcMdLdqchmc+pY60ZFWzaaf92kSMsGRc3vZX4fyf9qNT+va1TmHR9Q7vB3y6+tL9vWI10dii6Y21MAmf+42dum3r34g4YqN/lg5fY+RN6kA8w+68q2Tx6MQDUIUAaphpTYIwKVI0AZJGQWlEFCArIcAQScFKAM4mTsDI0AAhYLUAaxOFxGQwCBtxXwzU8f7Ho5OAXk7s4Xlfa94PrJyaE6o2m8PtQ4Vo2RRFUpUgapqrjYLAIIILBdAcog2yWq6Avis+9R9IUFPQWPoPhhCh75v06nCtq3X1Ov7BHvVfaYk+QPGVHQ2v5eHF29Ijj5I/asef3Lkqe3uI236zjl9jm0pwAyZkJ/H8E6BJwUoAziZOwMjUC/BSiD9JuuZyFlkJCALEcAAScFKIM4GTtDI4CAxQKUQSwOl9EQQGCbAmuznbqhfYluNL9ezLYH1zSZ0scHGnbX6aYEsm/N8KqVowxStdGxcQQQQGCbApRBqvOLEX/gTiX+cbMi61e/5QD+sB3kDTZ/5mgeIn/QMPPXw8xfD5Nv/tWPxYJ10XWrlfjP7YqsWtZ7n+yB000p5OSSlDDyp370vP7lMbP3Nb3P9JM18iZOVW7fw4JfftPg6gyGXSNQAQKUQSogBLaAQBUJUAYJGRZlkJCALEcAAScFKIM4GTtDI4CAxQKUQSwOl9EQQKBXICdf93St1HWti8y/rlL+9/nPATUjglNA3l+/u+qi8aoXowxS9REyAAIIILCFAGWQ1znif79B8bn3KXPa55XbY6/K+6Z0tSt+7597yhttm4P95V/tkj3qffJ33LWn5NE8tKf00dBc0P6ji55U4p7bFHvmkdf/bGMMcu84SflySH8/kc3rg3tG8wUQ84xIOt17K2/oSHlTpvW8AmavA/v7CNYhgMBWApRB+EoggEAhApRBCtHaxrWUQUICshwBBJwUoAziZOwMjQACFgtQBrE4XEZDAAG9nO3QH9oW6WZzCsiaXFcgMiRaoxnmFTBnNU3Q2MQgq5Qog1gVJ8MggAACogwi5QsLNbO+r+jiZ3q/EZmjTlD2g+cGZYtyfyKbNyjxz5sVe/DO3jKFb077yPzXqcodebz8mtqibTHyykrF77lV8Uf/8fqzzAkjmaM/qNwR7+mTR/T5eYrPn20KIObXyqVb7M0bv2/w6pfg9S+jdivavrkRAgi8LkAZhG8DAggUIkAZpBCtbVxLGSQkIMsRQMBJAcogTsbO0AggYLEAZRCLw2U0BBwVyPie/t65QtebAsgDXS8HZ4BEzK/Da0fpjMbxek/DbkpGolbqUAaxMlaGQgABhwVcL4PE59yrxPU/U6Srw5yqMUS5A6Yrbk7eyH/8QUOVmfGZUCdjhPlqRV95SfG/3xgUM177+CNGKXPcacpOe0+YW29/rTmFJPHAXxX/958Uad3Y41FjTiE58j3KvvND8oeMeP0eHW2K50//eO5xUwKZI5m1vZ/6JmX3M69+yZc/Jh0gv65h+8/mCgQQCCVAGSQUH4sRcE6AMkjIyCmDhARkOQIIOClAGcTJ2BkaAQQsFqAMYnG4jIaAYwLLM63BKSC3dCzVxlx3MP0OsTqd0jhOZ5pXwewSb7RehDKI9REzIAIIOCbgahkkX/5I3nipYrP/HSSe2/8Ipc4437xepUmRtatUc+1PFV3ydPCz7D6HmFfHfGHLAkQJvyex/Mka+ZNA3vDKFm+38cq8+zTlphxRwidv+9axx/+txL9uVfTFJb0XZKceJX+H0eY0lacUWzp/i4Xe6LE95Y/861/GTh7w/fJABFwXoAzi+jeA+REoTIAySGFeb7qaMkhIQJYjgICTApRBnIydoRFAwGIByiAWh8toCDgg0OVldWfnC+YUkMWa3b02mDhmzgE5un4XcwrIOB1bPzr4vSsfyiCuJM2cCCDgioCLZZB82SKRfy3MxrXmtIs6ZU79rLKHHfemyOMP3aXkn34rdbbJT9Yo+76PKHPsjJJ9NWJPP6z43TcqtnxB7zNyex8cvA4m/3qVcn+Ckop5hUzsyQe33EoiqezE/eXlX/+yz6EDVpoptwfPR6BSBSiDVGoy7AuByhSgDBIyF8ogIQFZjgACTgpQBnEydoZGAAGLBSiDWBwuoyFgscCC9MbgFJDbOpar1UsHk+4Sb9BppgByunkVzMh4vcXTv/VolEGcjJ2hEUDAYgHXyiDJP//evHrlhiDR3O6TlJ75dfnDR71lwpHWTUrccrnyr5PJf7zReyp9xpeUP6mjGJ/I5vXBiRsJUzrJvxbmtU/uoGOUPu4U+TvvUYzHFPUekfVrlDClEHmecvnTP8zJKXwQQKByBCiDVE4W7ASBahCgDBIyJcogIQFZjgACTgpQBnEydoZGAAGLBSiDWBwuoyFgmUCHl9GfOpbp+rbFeia9IZguEYnqOHP6R74AclTdzg6dAbLtcCmDWPalZxwEEHBewJUySGTdatX87numeLE4yDxz/FnKnHB2n/OPPfuYktf/VJHNPX8+yBxzkrInfER+bV2f7/HahcGrVZ6bq9j8xxVduXSL9dmjTzSnj5wsf9gOBd+XBQgggEBegDII3wMEEChEgDJIIVrbuJYySEhAliOAgJMClEGcjJ2hEUDAYgHKIBaHy2gIWCIwN7VW17Ut0V86l6vTvBYm/xkbH6TTm8fplIY9NTRWa8mk4cegDBLekDsggAAClSTgQhkkfv+dStx6hSLptLyhI5X+2Dfl7TGp4Bgi3V1K3GFOFvnP7cFaf/AwpU//0nZPxsif/hF79lFTAJmj6IInFUl1bvFsb8yE4PUq2aPeJ79xUMH7YgECCCDwRgHKIHwfEECgEAHKIIVobeNayiAhAVmOAAJOClAGcTJ2hkYAAYsFKINYHC6jIVDFAi1eSje3L9UN5hSQRZnNwSS1kZhOqB+j05rG6dDaHat4utJtnTJI6Wy5MwIIIFAOAZvLIJH2FiWv+mFwAkf+kz3sXcqc8llzmke4V71FVywO7htd82Jw39zUI5U++TOmHDK8J8JsVtGl84LnxubPVvTlF7aINl9I8SYdoNxeByo3aapU11iO6HkmAghYKkAZxNJgGQuBEglQBgkJSxkkJCDLEUDASQHKIE7GztAIIGCxAGUQi8NlNASqTMA3+32oe3XwGpi/d65QyveCCfZKDtUZTeN1UsMeao4mq2yqgd0uZZCB9eZpCCCAQKkFbC2D5EsYyWsuUaR1k1TfpNSZ5yu3/xFF5Yzfdb2Sd8wK7unXNSh30DvNa2TWK7oof/pHd++z/GRS3rgppvxxgLyJU+XtNKao++BmCCCAwBsFKIPwfUAAgUIEKIMUorWNaymDhARkOQIIOClAGcTJ2BkaAQQsFqAMYnG4jIZAlQisz3XphvYlutH8eiHTFuy6MZLQBxp212nN4zUl+eo/yVsl85Rzm5RByqnPsxFAAIHiC1hXBjGvgkne9hvF7/1zgJWbMEXpj1zw+qkdRSaMvLJSNdf9TNElT29xZ2/XcebUD3P6h/nlmT3wQQABBAZKgDLIQEnzHATsEKAMEjJHyiAhAVmOAAJOClAGcTJ2hkYAAYsFKINYHC6jIVDBAp583dO5MiiB/KvzJWXN7/OfqTUjdEbjeJ1oiiB10XgFT1CZW6MMUpm5sCsEEECgvwI2lUEiLy1VzZUXK/rKSwFH5qRPKPNfJ/eXpqB18YfuMoWQZ+VNPih49YvfOKig9VyMAAIIFEuAMkixJLkPAm4IUAYJmTNlkJCALEcAAScFKIM4GTtDI4CAxQKUQSwOl9EQqECBl7Mduj5/Coh5FczqXGeww8HRGs1o3MO8CmaCxicGV+Cuq2dLlEGqJyt2igACCPRFwIoyiO8r8a9blMi/siWblbfjrkp9/CL5O+/RFwKuQQABBKwSoAxiVZwMg0DJBSiDhCSmDBISkOUIIOCkAGUQJ2NnaAQQsFiAMojF4TIaAhUikPU93W1O/7i+fbHu71olz+wrYn4dXrujTmsar+PrxygZiVbIbqt7G5RBqjs/do8AAghsLVCqMkh02QLVXP8zpU84W7kp00oGH2nZ0HMaiDmVI//JHn2i0h/6pBRPlOyZ3BgBBBCoZAHKIJWcDntDoPIEKIOEzIQySEhAliOAgJMClEGcjJ2hEUDAYgHKIBaHy2gIlFlgeaZV15kTQG7pWKr1ua5gNyNjdTqlcU+dbl4Fs1uiqcw7tO/xlEHsy5SJEEDAbYFSlEHyr2mp/dEXpM62ADc3drIypqDh7T6pqNixJ+5XzbU/lbra5TcNVvqcryo3+eCiPoObIYAAAtUmQBmk2hJjvwiUV4AySEh/yiAhAVmOAAJOClAGcTJ2hkYAAYsFKINYHC6jIVAGgZSf052dL+h6UwJ5tPuVYAf5Mz/eUb+LTjMFkHfVj1YsOBeETykEKIOUQpV7IoAAAuUTKHYZJH9SR+2PPq/IxrXyR+6kyKb1UiYdDJibcoQyJ840r3EZHWrgSHenEjddpvij/+i5776HKX3m+UEhhA8CCCDgugBlENe/AcyPQGEClEEK83rT1ZRBQgKyHAEEnBSgDOJk7AyNAAIWC1AGsThcRkNgAAUWZzbrmtaF+lPHMrV4Pf9PpZ3jDaYAMk4fNq+CGRWrH8DduPsoyiDuZs/kCCBgp0AxyyCR7i7VXPIFRVctl7fDaKUuuFRKpxT/6x+UeOguycuZBmdMmWnvUfZ95/SrvBF9YZFqfvudnrJJskaZGZ9S9sgT7AyHqRBAAIF+CFAG6QcaSxBwWIAySMjwKYOEBGQ5Agg4KUAZxMnYGRoBBCwWoAxicbiMhkCJBTq8jG435Y8b2pboybT5J4vNJxGJ6l11o3Va0zgdXbcLZ4CUOIOtb08ZZIDBeRwCCCBQYoGilUFM0aPm0m8otvAJ+YOHqfuCX5p/Hd67+8jal5X4yyzF59wb/D2/plbZY2eYX6fIr63b/pS5nBL5UsndN5hSiSdv9J5Knfvf8keM2v5arkAAAQQcEqAM4lDYjIpAEQQog4REpAwSEpDlCCDgpABlECdjZ2gEELBYgDKIxeEyGgIlEngitU7Xty/WHe3L1eFng6fsEW8OCiAfNieBDI3VlujJ3HZ7ApRBtifEzxFAAIHqEihWGSR59Y+D17b4tfXBiSDejrtuEyL60vNK3H6lYs/NCX6ef7VL5vizlD3ieCkW2+aayLrVwWkg+bUy/0GUPe7DSp9wzlteX10JsFsEEECguAKUQYrryd0QsF2AMkjIhCmDhARkOQIIOClAGcTJ2BkaAQQsFqAMYnG4jIZAEQVazatfbmlfqhtMCWRBelNw59pITMfXjwlKIIfV7ljEp3Gr/gpQBumvHOsQQACByhQoRhkkccdVStx1XVDO6P78j+SN33e7w0YXP63krb9R9MXFwbXeyJ2VOXGmclOP2mJt/MG/KfHHKxRJdQcnjqQ//i3lxk7e7v25AAEEEHBVgDKIq8kzNwL9E6AM0j+33lWUQUICshwBBJwUoAziZOwMjQACFgtQBrE4XEZDoAgCD3evMa+BWay/da5Qt58L7rhXcqhOMyeAzGgcq+ZosghP4RbFEqAMUixJ7oMAAghUhkDYMkj8kX8oec2Pg2HSH7tI2QOPLmiw2JMPKnHHLEXXvBis83Ydr8zJnzYni4w2971EsWcfDf5+7qBjlD7tPPl1DQXdn4sRQAAB1wQog7iWOPMiEE6AMkg4P1EGCQnIcgQQcFKAMoiTsTM0AghYLEAZxOJwGQ2BfgpszHXrxvYl5lUwS7Q80xrcpSES14mNe+j0xvHav2Z4P+/MslILUAYptTD3RwABBIovEF21XN7Ou2/zxmHKIFFT1Ki9/FvBfTMf+qQyx87o9+bjD92lxJ1XK7J5Q3APv6benAbSGZQ/Mqd/seCSSb83wkIEEECgygUog1R5gGwfgQEWoAwSEpwySEhAliOAgJMClEGcjJ2hEUDAYgHKIBaHy2gIFCDgydd9Xat0vTkF5J9dK5XxvWD1VFP8OM0UQD7YsIfqovEC7sil5RCgDFIOdZ6JAAIIFCaQL1REF841p2o8pvjCJ6XONnmjxyo9w5y4MX6/LW7W3zJIdMUi1fzflxVJp5Q9+kSlT/1cYZvc1tXptBL33a743Tcq0tGm3J57K/PRr8sbOjL8vbkDAggg4IgAZRBHgmZMBIokQBkkJCRlkJCALEcAAScFKIM4GTtDI4CAxQKUQSwOl9EQ6IPA6lxn8BqY/Ekgq7IdwYrB0RqdZE4BOatpgsYnBvfhLlxSKQKUQSolCfaBAAIIvC4Q6e5SdMkzii2YY0ogTyq6esVb8uT2PUyZD54bvIYl/+lPGSSybrVqf3SeIu0tyk09Uqlz/7u4cXS1KzbvseDVMHwQQAABBAoToAxSmBdXI+C6AGWQkN8AyiAhAVmOAAJOClAGcTJ2hkYAAYsFKINYHC6jIfAWAjlzCsg/Ol8KTgG515wC0nMGiHR47Y46rWmcjq8fo5pIDL8qFKAMUoWhsWUEELBPwPOUP5kjtsCc/mF+RZcvkHK53jn9QUPNCSD7KzdpqnJ7HSB/0DDFnnpQyVt/o8j61VI0puwR71XmfeeoYcQwRc2/ubd2ZvrkFGnbrNpLvqDI2peV232SUuf/RIon+rSWixBAAAEESi9AGaT0xjwBAZsEKIOETJMySEhAliOAgJMClEGcjJ2hEUDAYgHKIBaHy2gIbCWwItOm69oX6+b257Uu1xX8dESsTic3jNWZ5hSQ3RJNmFW5AGWQKg+Q7SOAQNUKRDauVWz+7J4CyMKnJHN6xmsfv6ZW3p77KjfRlD8m7S9/5z22PWcmrfg9typxl3kNS6pTfm29oiecrthxp6g1G9m+jXklTO1PvqToi0vk7TBa3V/9udTAf7ZvH44rEEAAgYEToAwycNY8CQEbBCiDhEyRMkhIQJYjgICTApRBnIydoRFAwGIByiAWh8toCBiBtO/pr50vBK+Cebh7jTkTxPwDx+bX9LqddXrTeL2rbrTikfzf4WODAGUQG1JkBgQQqAaBSHenogueML/mKr5wrvKvZun9RKPydh3fc/KHKYB4e0w2p3PE+zxWpHWTErdfqfgjd/esGTpSqfd/VLmDzWtZ8v9Gv62POY2k5opvmde3zJbfPETdX79c/uDhfX4mFyKAAAIIDIwAZZCBceYpCNgiQBkkZJKUQUICshwBBJwUoAziZOwMjQACFgtQBrE4XEZzWmBxZrOubVukW9uXabOXCix2ijXow+Y1MPkSyKhYvdM+tg5PGcTWZJkLAQTKLmBe8xJd9pw59aOnABIzr4GRKWC89vFG7myKH/vLm3SAchOmSHWNobcceWmp6m40p3ssM6+ZMR9v9FhlTvmccnvu/aZ7J6/7qeIP/k35U0jyJ4K85ekjoXfFDRBAAAEEwghQBgmjx1oE3BOgDBIyc8ogIQFZjgACTgpQBnEydoZGAAGLBSiDWBwuozkn0O5ndJspf9zUtkRPptcH88cV0X/Vj9bpjeN1dP3O5lSQPhwz75ycPQNTBrEnSyZBAIHyC0RfeUnR50zxw5Q/ooufCV7d8trHbxxkyh9T5E005Y+9DpQ/ZERJNtxYZ/6T/LF7lLnxV4puWhc8I7fvYcp88Fx5O47+f/bOAzyO8trfv5nZVZdlW7Zxt2UVY2wwhFBMLyH00G1zSQgJCaElBO5N7s2993/rc1MJCUkooaWRYJtqegmEGhKabXDBktyL3JvqrnZm/uebleQmW7uarfP9vufZZ1fSfOW8Z+SifXVO/O/6Fx9BwdyHAMtC5Kb/k4okR6flLFyUBEiABEjAPwHKIP4ZcgUS0IkAZRCf2aYM4hMgp5MACWhJgDKIlmln0CRAAgEmQBkkwMllaNoQeLujyRNAnm9bhQ7X9uKuCpdjZlktZshjqFWsDQvdA6UMovsdwPhJgAR8EWjdJZU/5sWrfyx6v0e+6F7Ta/nWE+BCAAAgAElEQVQi1T+8CiDjJvraKtHJSgYx5Q/3XTtaEX5lNsLP/r5nauyUC+EMG42Cx+7xPhe55p9hH/e5RJfmdSRAAiRAAlkgQBkkC9C5JQnkMQHKID6TRxnEJ0BOJwES0JIAZRAt086gSYAEAkyAMkiAk8vQAk1gfawVs1oaMKelEWtiLV6sxWYIF5SMFwmkBscXDQ90/AyudwKUQXhnkAAJkEByBDzxQwkgqvrH6oa9Jjvj6kT86BZAPpPcwim6ukcGaev0VjSkOkj4ifsR+uAve+0QveiriJ1zZYp25TIkQAIkQALpIkAZJF1kuS4JBJMAZRCfeaUM4hMgp5MACWhJgDKIlmln0CRAAgEmQBkkwMllaIEjEJGqHy+0rhIJpBFvd6yH2xXhZwqHegLIxaUTUGqGAxc3A0qcAGWQxFnxShIgAT0JGGuWIaQEEJE/rMZPgM5oDwh3yHCRP6Tti6r+MUnkj5LyrEPaVwbpPpC1bBHCc+7yBJbYSechetWtWT8rD0ACJEACJNA3AcogfTPiFSRAArsJUAbxeTdQBvEJkNNJgAS0JEAZRMu0M2gSIIEAE6AMEuDkMrTAEFgQ3YpZzfWY27oCO534m1ZDpPXLZSJ/XFVeh+pwRWBiZSD+CFAG8cePs0mABIJHwNi1Hebi90UAmSfPH8Bo3rE7yOIy2BOPjLd9mSiP4WNyDsCBZJDug1oL/gp76gk5d24eiARIgARIoHcClEF4Z5AACSRDgDJIMrR6uZYyiE+AnE4CJKAlAcogWqadQZMACQSYAGWQACeXoeU1gTYnhoebl2K2VAH5tHN7TyxnFI/2BJBzSsbmdXw8fHoIUAZJD1euSgIkkEcEohFYDQuk9ctH0vpFKoCsW7H78KEwnAmTEZOqH45q/zK2FjDNnA6uLxkkpw/Pw5EACZAACexHgDIIbwoSIIFkCFAGSYZWL9dSBvEJkNNJgAS0JEAZRMu0M2gSIIEAE6AMEuDkMrS8JTA/ugU3bnoDq2LNXgxV4XJML6vFjNIaHBIqydu4ePD0E6AMkn7G3IEESCD3CJgbVsNc+D4sqQBiNXwMxDp7DumMrpbqH1L1QwQQu/YIoKAw9wI4yIkog+RVunhYEiABEuiTAGWQPhHxAhIggT0IUAbxeTtQBvEJkNNJgAS0JEAZRMu0M2gSIIEAE6AMEuDkMrS8JPDjHfNw544F3tmrwgNwe+UJOL5oeF7GwkNnngBlkMwz544kQAKZJ2B0tMNcKm1fFkn7FxFAjK0bew7hVgz2qn7YU46X9i9Hwi3L71ZqlEEyf39xRxIgARJIJwHKIOmky7VJIHgEKIP4zCllEJ8AOZ0ESEBLApRBtEw7gyYBEggwAcogAU4uQ8srAss7d+GGzW9gYXSrd+4vldXhvyqPQ5Fh5VUcPGx2CVAGyS5/7k4CJJA+AmbTSlhS/UMJINayT6T6Ryy+mWVJ65cpIn8cg9hhn4UrlUCCNCiDBCmbjIUESIAEAMogvAtIgASSIUAZJBlavVxLGcQnQE4nARLQkgBlEC3TzqBJgAQCTIAySICTy9DyhsDvmj/F/27/AO1ODIPMQvxy6Mk4vXh03pyfB80dApRBcicXPAkJkIA/AkZHG8xP58Fa9B7MxR/A3LapZ0Fn8DA4In7Yk4+VKiBHwS0Kbgs1yiD+7iPOJgESIIFcI0AZJNcywvOQQG4ToAziMz+UQXwC5HQSIAEtCVAG0TLtDJoESCDABCiDBDi5DC3nCWyx23HT5jfxdkeTd9aTikbgrqGnYIhVnPNn5wFzkwBlkNzMC09FAiSQGAGrcSHM5YtgrlsB671X95pkTzwSzuRjYB92DJxRVYktGICrKIMEIIkMgQRIgAT2IEAZhLcDCZBAMgQogyRDq5drKYP4BMjpJEACWhKgDKJl2hk0CZBAgAlQBglwchlaThN4pX0Nbt38NrY7Ea8VzL8O+iyuHTApp8/Mw+U+AcoguZ8jnpAESGA3AXNVPaz6+TCXyqPhYxjRSM8Xveofhx8Pe9LRcCaq6h96ipKUQfgdQwIkQALBIkAZJFj5ZDQkkG4ClEF8EqYM4hMgp5MACWhJgDKIlmln0CRAAgEmQBkkwMllaDlJoNXpxL9v+zvmtDR656sNV+D+YafL88CcPC8PlV8EKIPkV754WhLQjYCq+KHED2uptH9p+ARob+lB4JYPhD1xKpy6I+VZ5I9ho3TD02u8lEF4G5AACZBAsAhQBglWPhkNCaSbAGUQn4Qpg/gEyOkkQAJaEqAMomXaGTQJkECACVAGCXByGVrOEfggsknawryBtbFWGHK6rw04zKsIUmCYOXdWHig/CVAGyc+88dQkEFQC5oY1UvFjQVwAqV8Ao3lHT6hucSmc2iNE/JD2LyJ/6NT6JZl8UwZJhhavJQESIIHcJ0AZJPdzxBOSQC4RoAziMxuUQXwC5HQSIAEtCVAG0TLtDJoESCDABCiDBDi5DC1nCHS6Dm7fMQ937/wEjpxqmFWMe4aeiuOLhufMGXmQYBCgDBKMPDIKEshXAsa2TbA+/cgTP0yp/mHs2NoTiltQCKd6iogf8cofzthawKQM2VeuKYP0RYhfJwESIIH8IkAZJL/yxdOSQLYJUAbxmQHKID4BcjoJkICWBCiDaJl2Bk0CJBBgApRBApxchpYTBBo6d+AGqQayJLrdO89ZxaNx59CTUWEW5sT5eIhgEaAMEqx8MhoSyHUCxs6tMOtV25cF8pgPY0vT7iOHQnDGH+qJH7a0fnEmTAJC4VwPKefORxkk51LCA5EACZCALwKUQXzh42QS0I4AZRCfKacM4hMgp5MACWhJgDKIlmln0CRAAgEmQBkkwMllaGklsCnWhp1uFDudKHbYEe/1Llt9HIG9x8537JjvfVRihvBfg47BVeUT03ouLq43Acogeuef0ZNA2gm07uoSP+Z5rV/MjWt2bylVPpwxNfGqH6r1i1QBcQuL0n6koG9AGSToGWZ8JEACuhGgDKJbxhkvCfgjQBnEHz9QBvEJkNNJgAS0JEAZRMu0M2gSIIEAE6AMEuDkMjTfBHaJ6PFYyzK82LYKW+wOT/TYIZ/rcPfUPfre5siCStw19DSMD5f3fTGvIAEfBCiD+IDHqSRAAvsRMDrapPKHtHzpqv5hrl221zXOyPE9bV/suiOA4jJSTDEByiApBsrlSIAESCDLBCiDZDkB3J4E8owAZRCfCaMM4hMgp5MACWhJgDKIlmln0CRAAgEmQBkkwMllaP0m8Fb7esxqacBTrSsOuEaFWSCtXuRhFaLC2Oe1pT6Of36gvD61eFS/z8KJJJAMAcogydDitSRAAvsSMCIdMJct9Kp+WCKAmKsbAMfpucwdNjLe8kW1fpHqH275QEJMMwHKIGkGzOVJgARIIMMEKINkGDi3I4E8J0AZxGcCKYP4BMjpJEACWhKgDKJl2hk0CZBAgAlQBglwchlaUgTWx1oxWwQQJYGsldfd4/DCSvxDWR2OkuoeSvwYIALIQBE9OEggFwlQBsnFrPBMJJDDBDqjMFcsiYsfSgCR17B3V79yB1b2iB/2oZ+BO2hoDgcTzKNRBglmXhkVCZCAvgQog+ibe0ZOAv0hQBmkP9T2mEMZxCdATicBEtCSAGUQLdPOoEmABAJMgDJIgJPL0PokEHUdvNC6CrNaG/C2VAPp/t3nQSJ7XFY2ATPLajGpYHCf6/ACEsgVApRBciUTPAcJ5CgBx4a1cikMJX7Iw1yxCEY02nNYt6xCKn9M9QQQRz0PH5OjgehzLMog+uSakZIACehBgDKIHnlmlCSQKgKUQXySpAziEyCnkwAJaEmAMoiWaWfQJEACASZAGSTAyWVoBySwJLoNf2yux5PSBmaHE/Gus2B47VxmlNXg7JKxCBsmCZJA3hGgDJJ3KeOBSSC9BKTFi7mmMV75o34BzIaFMCJtPXu6RSVwag6Xli9dbV9GTwDUHyQcOUOAMkjOpIIHIQESIIGUEKAMkhKMXIQEtCFAGcRnqimD+ATI6SRAAloSoAyiZdoZNAmQQIAJUAYJcHIZ2l4Edor08UTLcmkD04iF0a09X6sKl2O6VAC5QiSQEVYJqZFAXhOgDJLX6ePhSSAlBMz1K+MtX5bOg9XwCdDW3LOuW1AAZ8IUkT+OlOof8hhXB5hWSvblIukhQBkkPVy5KgmQAAlkiwBlkGyR574kkJ8EKIP4zBtlEJ8AOZ0ESEBLApRBtEw7gyYBEggwAcogAU4uQ4MrDFT7l0daGvBi2ypEpC2MGiVmCOeXjJc2MDU4vmg4SZFAYAhQBglMKhkICSRMwNi4tqvyhxJAFsBo3rF7rmXBHn+o1/bFnihtX6oOA8IFCa/NC7NPgDJI9nPAE5AACZBAKglQBkklTa5FAsEnQBnEZ44pg/gEyOkkQAJaEqAMomXaGTQJkECACVAGCXByNQ5tfazVE0DmyGOtvO4eRxcOFQGkFheVVqHUDGtMiKEHlQBlkKBmlnGRwG4CxvbNsD79SKp/SNsXqf5h7tiyxxcNOGNqvLYvjpI/qg+HW1RMfHlMgDJIHiePRycBEiCBXghQBuFtQQIkkAwByiDJ0OrlWsogPgFyOgmQgJYEKINomXYGTQIkEGAClEECnFzNQotK1Y8XWld5EsjbHeu9qiBqDLOKcVlpNa4sr0V1uEIzKgxXNwKUQXTLOOPVgYCxa7vIHyJ91EvlD3kYm5v2CtsZMc5r+aJav9h1U6X8VbkOWLSJkTKINqlmoCRAApoQoAyiSaIZJgmkiABlEJ8gKYP4BMjpJEACWhKgDKJl2hk0CZBAgAlQBglwcjUJbWFkK2aJAPJk6wrscCJe1CEYOLNktFQBqfOeLfmYgwR0IEAZRIcsM8bAE2jdJdLHx9LyRQSQpfNhbli9V8jukOHxyh91In8cehTcAYMCj0TnACmD6Jx9xk4CJBBEApRBgphVxkQC6SNAGcQnW8ogPgFyOgmQgJYEKINomXYGTQIkEGAClEECnNwAh7ZTpI8nWpZ7VUAWRbf1RFoXHogZ5TWYXlqDwVZRgAkwNBLonQBlEN4ZJJB/BIyONqn6IS1fGhaIACLyx5plewXhDhgslT+OEgFkKuxJR8MdPCz/guSJ+02AMki/0XEiCZAACeQkAcogOZkWHooEcpYAZRCfqaEM4hMgp5MACWhJgDKIlmln0CRAAgEmQBkkwMkNWGiq7ctb7eu9KiAvtq1CRNrCqFFuhPGFsirMKKvF0YVDAxY1wyGB5AhQBkmOF68mgawQiEZgLVvoVf3w5I/V9YAT/ztNDbe0XKp+iPihqn9I6xdn+NisHJOb5gYByiC5kQeeggRIgARSRYAySKpIch0S0IMAZRCfeaYM4hMgp5MACWhJgDKIlmln0CRAAgEmQBkkwMkNSGjrY61eBZDZ8lgnr9VQTV+OLxouAkgNLigZj2IzFJBoGQYJ+CNAGcQfP84mgbQQiHXCXL5EWr8o+UNav6z8FIjFerZyC4vh1B4eb/ui5I8xNfIXHdubpSUXebgoZZA8TBqPTAIkQAIHIUAZhLcHCZBAMgQogyRDq5drKYP4BMjpJEACWhKgDKJl2hk0CZBAgAlQBglwcvM4tIhr44XWVVIFpBFvd6yHqgqixgirBFeIADJTqoCMC5fncYQ8OgmkhwBlkPRw5aokkBQBxxbho15av3RV/li+EEY0unuJcAGcqsMQO/RIuKr9y/iJgGkltQUv1ocAZRB9cs1ISYAE9CBAGUSPPDNKEkgVAcogPklSBvEJkNNJgAS0JEAZRMu0M2gSIIEAE6AMEuDk5mFon0S2eALIU60rsMOJeBEUGCbOLhnrVQE5tXgUTK8uCAcJkEBvBCiD8L4ggSwQkBYv5tplXssXo2GBVAD5BEakbfdBRPSwx9dJyxcRP1Tlj6rJ8pdbQRYOyi3zkQBlkHzMGs9MAiRAAgcmQBmEdwcJkEAyBCiDJEOrl2spg/gEyOkkQAJaEqAMomXaGTQJkECACVAGCXBy8yS0nSJ9PN6yXCSQBiyKbus59eSCwV4FkMvKJqDCLMyTaHhMEsguAcog2eXP3fUhYDathLlUxA/V9qXhYxitzXsF74yphl13lAggIn9ICxi3qEQfOIw0pQQog6QUJxcjARIggawToAyS9RTwACSQVwQog/hMF2UQnwA5nQRIQEsClEG0TDuDJgESCDAByiABTm4Oh6bavrzZvs6rAvJS2ypEXMc77UCRPi4prfIkkCmFlTkcAY9GArlJgDJIbuaFp8p/AsamdV7lD6/1S/0CGLu27xWUc8gYT/ywveofU4HSAfkfNCPICQKUQXIiDTwECZAACaSMAGWQlKHkQiSgBQHKID7TTBnEJ0BOJwES0JIAZRAt086gSYAEAkyAMkiAk5uDoa2NtXgCyBypArIu1uqd0JTHycUjPQHknJJxXlsYDhIggf4RoAzSP26cRQL7EjC2b4b1qVT9EPHDVNU/5OM9hzt4WFz8ODRe/cOtoMDIuyg9BCiDpIcrVyUBEiCBbBGgDJIt8tyXBPKTAGUQn3mjDOITIKeTAAloSYAyiJZpZ9AkQAIBJkAZJMDJzZHQIq6N56X6x6zmBrzT0QRVFUSNsaEyzCirwXSRQEaGSnPktDwGCeQ3Acog+Z0/nj57BFSlj92VP+bD2LR+r8O4AwZJ2xdp+dJV/cMdOiJ7h+XOWhGgDKJVuhksCZCABgQog2iQZIZIAikkQBnEJ0zKID4BcjoJkICWBCiDaJl2Bk0CJBBgApRBApzcLIf2SWQLHpEKIE+1rsBOJ+qdpsiwcH7JeMwor8EJRSNgZPmM3J4EgkaAMkjQMsp40kagrdlr9+IJIOrRtGrvrUrKYdce7lX/cA4VCWTE+LQdhQuTwMEIUAbh/UECJEACwSJAGSRY+WQ0JJBuApRBfBKmDOITIKeTAAloSYAyiJZpZ9AkQAIBJkAZJMDJzUJoO50IHmtZLq1gGrA4uq3nBEcVDBEBpBaXlE1AmRHOwsm4JQnoQYAyiB55ZpTJEzA62mA0fCzyhwgg9SJ/rF0GuN21quRlYRGcmsPjlT/qpsIZUyt9zNi2LHnSnJFqApRBUk2U65EACZBAdglQBskuf+5OAvlGgDKIz4xRBvEJkNNJgAS0JEAZRMu0M2gSIIEAE6AMEuDkZig0Rxq/vNW+3qsC8nLbakRcx9u50irCZWXVuFLawNSFB2boNNyGBPQmQBlE7/wz+j0IRCOwli305A9D5A9rVT3g2LsvCIXhTJjU1frlKNjjDwVCISIkgZwjQBkk51LCA5EACZCALwKUQXzh42QS0I4AZRCfKacM4hMgp5MACWhJgDKIlmln0CRAAgEmQBkkwMlNc2hrYy2eADKnuRHr7VZvN0sav5xePAozy+twVvFohAz+VnWa08DlSWAvApRBeENoSyDWCXPFpyJ/zItX/lixBIjFduOQKh/O2Dqp/CHix8SpsKunAAWF2uJi4PlDgDJI/uSKJyUBEiCBRAhQBkmEEq8hARLoJkAZxOe9QBnEJ0BOJwES0JIAZRAt086gSYAEAkyAMkiAk5uG0CKujefbVuGR5gb8taNJaoLER3WoQtrA1GBGWQ2GWMVp2JlLkgAJJEKAMkgilHhNIAhIlQ9Tqn2YquqHVP8wpQqIIdVA9hzuqAkifkjbF3k40vrFLSoJROgMQi8ClEH0yjejJQESCD4ByiDBzzEjJIFUEqAM4pMmZRCfADmdBEhASwKUQbRMO4MmARIIMAHKIAFObgpD+ziyBbOkCshTrSuw04l6K5caIVxYWoWZ0gbmmKJhKdyNS5EACfSXAGWQ/pLjvJwn4Low1y4T8UOqfqhH4ycwOtr2OrYzbHRc/Oh6uGUVOR8WD0gCfRGgDNIXIX6dBEiABPKLAGWQ/MoXT0sC2SZAGcRnBiiD+ATI6SRAAloSoAyiZdoZNAmQQIAJUAYJcHJ9hrbdieCJluWeBLI4uq1ntWNF/FACyBdKqlBshnzuwukkQAKpJEAZJJU0uVa2CZhNqzzxwxNAGhbAaG3e60jOoKE9bV+cQ4+GO7Ay20fm/iSQcgKUQVKOlAuSAAmQQFYJUAbJKn5uTgJ5R4AyiM+UUQbxCZDTSYAEtCRAGUTLtDNoEiCBABOgDBLg5PYjNEcav7zZvt4TQF5qW42o63irDJfWL5dLCxglgVSFB/RjZU4hARLIBAHKIJmgzD3SRcDYtB6WtH3xBBAlf+zcLSKqPd3ygVL5Y6q0fFGtX46CO2xUuo7CdUkgZwhQBsmZVPAgJEACJJASApRBUoKRi5CANgQog/hMNWUQnwA5nQRIQEsClEG0TDuDJgESCDAByiABTm4Soa2NteAREUDmNDdivd3qzQwbJs4qHo0ZIoCcXjIaFowkVuSlJEAC2SBAGSQb1LmnHwKhD96AtfBvIoDMg7Fj615LuUUlIn5Mhe3JH1Phjq72sxXnkkBeEqAMkpdp46FJgARI4IAEKIPw5iABEkiGAGWQZGj1ci1lEJ8AOZ0ESEBLApRBtEw7gyYBEggwAcogAU5uH6FFXBvPta3ELBFA/trRJDVB4mNSwSBML63BFeU1GGQW6guIkZNAHhKgDJKHSdPoyObKpTCXL4K1bCHMxkUwdu1d+QPhAtjVU+AcepTIH0fCGX+oRnQYKgn0ToAyCO8MEiABEggWAcogwconoyGBdBOgDOKTMGUQnwA5nQRIQEsClEG0TDuDJgESCDAByiABTu4BQlsQ3SoCSD3mtq7ATifqXVVhFuCi0irMLK/D1IJK/aAwYhIICAHKIAFJZBDCaG+BJcKHuWKxyB+LvWd0xv/O2XM4dUfArpWHVP9QVUA4SIAE9iZAGYR3BAmQAAkEiwBlkGDlk9GQQLoJUAZJgPDMG/4HnzasAtRPRGQMKCvBm0/+wntNGSQBgLyEBEiABPYhQBmEtwQJkAAJBIsAZZBg5fNA0Wx3Ini8ZRlmtzRicTT+m9jqf0gnFo0QAaQW55WMQ6Fh6QGDUZJAgAlQBglwcnM8NGPTOpE+RP6Qyh+mkj+aVu53Yrd0AJzqyXBqpPqHVACxx9YBoVCOR8bjkUB2CVAGyS5/7k4CJEACqSZAGSTVRLkeCQSbAGWQBPJ7/pf+BXf+zzdRUzVqv6spgyQAkJeQAAmQwD4EKIPwliABEiCBYBGgDBKsfO4ZjSONX95oX4dZIoC83LYaUdfxvjw6VIrpZbWYUVYjr8uCC4CRkYCGBCiDaJj0LIcc+uuLCD/5AIyWnfudxB0yIt72ZcJhcQFk5Pgsn5bbk0D+EaAMkn8544lJgARI4GAEKIPw/iABEkiGAGWQBGideuktmP3r/8TwoYP3u5oySAIAeQkJkAAJ7EOAMghvCRIgARIIFgHKIMHKp4pmbawFf2ppwJzmBjTZbV6ARVL145ySsZgpEshJxSO9qiAcJEACwSNAGSR4Oc3liKzli1H4k1t6juhIpQ+7VlX9ONyrAOIOGJTLx+fZSCAvCFAGyYs08ZAkQAIkkDAByiAJo+KFJEACQoAySAK3wVGf/zpOOe4IfPRJPQYPGoDbrpuOU6fFe5BSBkkAIC8hARIggX0IUAbhLUECJEACwSJAGSQY+Yy4Np5tW4nZIoD8tWOD1ASJjyMKKr02MJeUTsAAsyAYwTIKEiCBAxKgDMKbI1MEjB1bUfSDG2Ds2o7OMy9F7MKvwC0sytT23IcEtCFAGUSbVDNQEiABTQhQBtEk0QyTBFJEgDJIHyAdx8X/+/GD+NwpR+OkY4/A2+99jO/+7714+nc/wIhhg+G43T8iTVFGuAwJkEDeEOBvw+ZNqnjQHCdgqHccOEiABEiABLJG4IO2zXhwyxI8sq0BO+2od45KqxBfrKzDtUMm4fDiyqydjRuTAAmQAAkElEAshuZ/uw72inqEDv8syv7tDsA0Axosw8oHAi5/xpsPaeIZSSAtBPgOT1qwctE0Euj+SWqu3bsmf8abxqxzaRLoPwHKIP1g99Vbf4RLzzsFF5w1DU1b2/uxAqeQAAkEgUCu/WMrn5iyMkg+ZYtnJQESIIG+CbAySN+Mcu2K7U4Ej7Usw2xpBbMkut07niWNX04tHoUZZTU4W9rBhA2+KZdreeN5SCATBFgZJBOUuUfB729H6N2X4Aweho5//zVQXEYoJEACaSLAyiBpAstlA0OAv6IUmFRqE8iwQUXYsjMC9cvsuTRGVBbn0nF4FhIggS4ClEH6uBXa2iOoX74GR06u6bny6m99H1ddehbOPu0YtonhtxIJkAAJ9IMAZZB+QOMUEiABEshhApRBcjg5exzNkcYvb7SvwywRQF5uW4Oo63hfrQqXY3pZLWaW1mBYqCQ/guEpSYAE0kaAMkja0HLhLgKht55FwZ/uhFtQiI7v/gLuqAlkQwIkkEYClEHSCJdLkwAJkEAWCLBNTBagc0sSyGMClEH6SN6uljacecWt+Nl/3yxtYg6XNjGf4Dv/cw+e/cMPUTloAGWQPL75eXQSIIHsEaAMkj323JkESIAE0kGAMkg6qKZuzbWxFvyxuR6PtjSiyW7zFi4xQzi/ZDxmShWQ44uGp24zrkQCJJD3BCiD5H0KczoAc/kSFN1xK2DbiFz3n7CPOimnz8vDkUAQCFAGCUIWGQMJkAAJ7CZAGYR3AwmQQDIEKIMkQOutv3+Cn9wzCxs3b8PoEUPx3ZuuxHFHTfJmrmebmAQI8hISIAES2JsAZRDeESRAAiQQLAKUQXIvn+1ODM+3r8Ks5ga827FBaoLEx9GFQ0UAqcVFpVUoNcO5d3CeiARIIOsEKINkPQVZOYAR6YCx6lOY61fBPv7zcItSX+bb2LEFRd+/AUbzDnR+7gp0XnZdVmLlpiSgGwHKILplnPGSAAkEnQBlkKBnmPGRQGoJUAbxyZMyiE+AnE4CJKAlAcogWqadQZMACQSYAGWQ3Enu/OgWTwCZ27oCu5yod7BhVjEuK/tKVpMAACAASURBVK3GleW1qA5X5M5heRISIIGcJEAZJCfTkvJDmavq4T1WigCycinMppU9e7jDRqLj6/8Bd3R1Svct/PG3YK1YAvvQzyByy49SujYXIwESODAByiC8O0iABEggWAQogwQrn4yGBNJNgDKIT8KUQXwC5HQSIAEtCVAG0TLtDJoESCDABCiDZDe5250IHmtZ5kkgn3Zu9w4TgoEzS0ZLFZA679mSjzlIgARIIBEClEESoZRf1xib1sFc0whzhYgfKxbDWr54/wDCBbDHVMNob+8RQ6L/cAtiJ1+QkmDDf7oT4beehVt5CNq/dw9QWp6SdbkICZBA3wQog/TNiFeQAAmQQD4RoAyST9niWUkg+wQog/jMAWUQnwA5nQRIQEsClEG0TDuDJgESCDAByiCZT64jjV9eb1uH2a0NeLltDaKu4x2iLjwQM8prML20BoOtoswfjDuSAAnkPQHKIHmewvYWWMsWi/SxRCp/LBXxYwkgn9t3OCPHwxlbB6fqUDjjJsqjrueS8LO/R/i5P3gfxz57GjqvulXaxpT0G0zonRdQ8PAdcAsK0PGdX6S84ki/D8aJJKAJAcogmiSaYZIACWhDgDKINqlmoCSQEgKUQXxipAziEyCnkwAJaEmAMoiWaWfQJEACASZAGSRzyV3V2YxZLQ14tKURTXabt3G5EcZFpVWYLm1gji4cmrnDcCcSIIFAEqAMkmdpVfJHwycwGxbAqv8Y5uqG/QJQIodTPQXOeJE+qieLADKpT7nDWvIhCh78PozWXXCGjUL0uv+EM6oqaTiqBU3Rj2725kW/+q+IHXN60mtwAgmQgD8ClEH88eNsEiABEsg1ApRBci0jPA8J5DYByiA+80MZxCdATicBEtCSAGUQLdPOoEmABAJMgDJIepPb7sTwXNsqzBYJ5N2ODVITBF7Tl2lFwzGjrBbnl4xDsRlK7yG4OgmQgDYEKIPkdqqNjjYRP5T88TGspfN6lz9GTYBddwRsqfbhjq2FM2J8v4IydmxBwX3/A0uqjKiRbNsYY+c2FP3gRhg7t6LzzMvRefk3+nUOTiIBEvBHgDKIP36cTQIkQAK5RoAySK5lhOchgdwmQBnEZ34og/gEyOkkQAJaEqAMomXaGTQJkECACVAGSU9y50W2YHZzPZ5qXYFmt9PbZIRV4lUAmSFtYMaFy9OzMVclARLQmgBlkNxKf4/8Ua8qfyyAubYRcOKtwbqH2y1/1E2FXXsEUDogdUHYNgqeuA+h157w1owdcwY6/+HbUlmk+OB7xGIovOM2TyRxag9Hx7dvB0wzdefiSiRAAgkToAySMCpeSAIkQAJ5QYAySF6kiYckgZwhQBnEZyoog/gEyOkkQAJaEqAMomXaGTQJkECACVAGSV1ytzsRPNrcKFVAGvFp53Zv4ULDxOdLxmKmVAE5pXgkTK8uCAcJkAAJpIcAZZD0cE10VaNlJ4z1K2GtWgrrgzek8kf9flNVuxZHpA+7VuSPiVNTK38c4KDWvLdR8PufQMkp7rCRiFz3XwdtG1PwyC8QevMZuIOHof1f78nIGRNlzOtIQDcClEF0yzjjJQESCDoByiBBzzDjI4HUEqAM4pMnZRCfADmdBEhASwKUQbRMO4MmARIIMAHKIP6Sa0vjl9fb1noCyMvta9Dpxn/je3LBYE8AuaxsAirMQn+bcDYJkAAJJEiAMkiCoFJ0mbF2mVc9w1y2GObKT2FuXLPfyqrNiyPSh113pFdlwy2rSNHuyS1jbFqPwvv/R6qTLAPCBYhecQNiJ1+w3yKhd15AwcN3eJ/vEBHEGVOT3Ea8mgRIIKUEKIOkFCcXIwESIIGsE6AMkvUU8AAkkFcEKIP4TBdlEJ8AOZ0ESEBLApRBtEw7gyYBEggwAcog/Uvuqs5mzGppwKMigTTZbd4iA0X6uKS0ypNAphRW9m9hziIBEiABHwQog/iA18dUr+XLcpE+uh8igajP7TucsbVwaqbArp4CR1q/ZEv+OFA4BX/8GUJvP+992T72TESvvKWnbYy5qh5FP7zJ+1r0K99D7Ngz0geUK5MACSREgDJIQph4EQmQAAnkDQHKIHmTKh6UBHKCAGUQn2mgDOITIKeTAAloSYAyiJZpZ9AkQAIBJkAZJPHktjsxPNu20qsC8reODVITBNL2BThZ2r8oAeScknEokLYwHCRAAiSQLQKUQVJH3ti0TsSPRbBU1Y8V8pD2L3DVn/y7hxI9nKpJIn4cJs/yGD8JKChI3SHStJL1/qte9Q8jGoUzbBSi1/833NIBKPr+DTB2bkXsjEukcsiNadqdy5IACSRDgDJIMrR4LQmQAAnkPgHKILmfI56QBHKJAGUQn9mgDOITIKeTAAloSYAyiJZpZ9AkQAIBJkAZpO/kzotswazmesxtXYFmt9ObMDZUhhllNZhRXocRVknfi/AKEiABEsgAAcog/Yds1n8sLV9E+li2yJNAjNbm/RbzWr5UT4YzYZIngTjDx/Z/wyzPNNYtR9F9/w3VPka1jXGGjIDZtEpa2UxFx223Z/l03J4ESKCbAGUQ3gskQAIkECwClEGClU9GQwLpJkAZxCdhyiA+AXI6CZCAlgQog2iZdgZNAiQQYAKUQXpP7ja7A4+1LPNawSzt3OFdVGRYOL9kvAggNTihaASMAN8XDI0ESCA/CVAGSSxvxo6tIn0s9Cp+WI3yLO1R9h1uYbFIH1LtQ4kfE0QAEfnDLS5NbIM8uUq1uSn4w+2wPnrLO7EzeBgi/3IX3PKBeRIBj0kCwSdAGST4OWaEJEACehGgDKJXvhktCfglQBnEJ0HKID4BcjoJkICWBCiDaJl2Bk0CJBBgApRBdifXlsYvr7et9QSQV9rXotN1vC8eVTBEBJBaXFI2AWVGOMB3A0MjARLIdwKUQXrJoG3DXLssXvFjhTxU25ftm/e70B02EnaVSB/S8sUWCcSVKiAw9Wj9FXrtSYSf/g0it94OZ1xdvn8b8PwkECgClEEClU4GQwIkQAKgDMKbgARIIBkClEGSodXLtZRBfALkdBIgAS0JUAbRMu0MmgRIIMAEKIMAqzqb8YgIII/KY4Pd7mV7iFWMS0X+uLKsFnVh/oZ0gL8FGBoJBIoAZRDxNzaugbG6Xqp9NMJa9SlMqfyx35C2KLZID071lK7qHyJ/lFUE6l5IOpg2aYtTUp70NE4gARJILwHKIOnly9VJgARIINMEKINkmjj3I4H8JkAZxGf+KIP4BMjpJEACWhKgDKJl2hk0CZBAgAnoKoO0OzE827bSqwLyt46NXoYtafxyevEozCyvw1nFoxEy9PiN8ADf3gyNBLQjoJUM4roifqyFubpB5I8GWGvq5bkRqvXJvsMZNLRH+vBavoypkT/0Le3uDwZMAiSQfwQog+RfznhiEiABEjgYAcogvD9IgASSIUAZJBlavVxLGcQnQE4nARLQkgBlEC3TzqBJgAQCTEA3GeSjyGbMbm7A3NYVaHY7vcxWhyqkDUwNZpTVeBVBOEiABEggXwkEWQYxN6yJix9rVMUPJX7IIxKv5rTXkOoW9thar92JM24inKpJcAdW5mtKeW4SIAHNCVAG0fwGYPgkQAKBI0AZJHApZUAkkFYClEF84qUM4hMgp5MACWhJgDKIlmln0CRAAgEmoIMMss3uwGMty7wqIEs7d3jZLDVCuLC0CjOlDcwxRcMCnGGGRgIkoBOBwMggrbtgLVsEa8USmMuXwFi1tHfxo7hsb/FDKn64Q0folHLGSgIkEHAClEECnmCGRwIkoB0ByiDapZwBk4AvApRBfOEDKIP4BMjpJEACWhKgDKJl2hk0CZBAgAkEVQax4eIvbWsxWwSQV9rXotN1vCweV3SIVwHkCyVVKDZDAc4sQyMBEtCRQF7KIKrdy/qVIn0sgtklf5gb1+yfPk/8qIEztg6uPGyp/EHxQ8e7nDGTgF4EKIPolW9GSwIkEHwClEGCn2NGSAKpJEAZxCdNyiA+AXI6CZCAlgQog2iZdgZNAiQQYAJBk0FanU78YufHUgmkERvsePuA4dL65XIRQGZIFZAJ4QEBziZDIwES0J1APsggRnuriB+Lu8QPeVaVPyJt+6XOGVMNp3oKnAmT4+LHsFG6p5fxkwAJaEiAMoiGSWfIJEACgSZAGSTQ6WVwJJByApRBfCKlDOITIKeTAAloSYAyiJZpZ9AkQAIBJpCLMsgLbasxP7IZLSJ2tLoxtDpRtMhzhzx22Z3yWj52YtjhRA6amQtKx2F6aQ3OLBkT4AwyNBIgARLYTSAXZRBV5cOTP7ofTasAqQay53BLy+FUTYI94TBP/nDHHwq3sIipJQESIAHtCVAG0f4WIAASIIGAEaAMErCEMhwSSDMByiA+AVMG8QmQ00mABLQkQBlEy7QzaBIggQATyBUZZFF0K+ZINY/HW5Zjex+Sh0qHavEy0ChAhVmIgVYBBqjXlrw2CzAmVI5LyyZgkHyNgwRIgAR0IpBtGcSIdMBY+WlX5Y/FsFTVj9Zd+6XAGT5Wqn5M9gQQ71k+5iABEiABEtifAGUQ3hUkQAIkECwClEGClU9GQwLpJkAZxCdhyiA+AXI6CZCAlgQog2iZdgZNAiQQYALZlEG22R14vHW5J4Esjm7roXxp6QTUhCs8uaNC5I6KPUQP9fEQafvCQQIkQAIksD+BTMsgxpYmT/ywuqt+rFsOOM5eB3MLi+GMn+hV/HCk8oddfZgYfWVMHwmQAAmQQAIEKIMkAImXkAAJkEAeEaAMkkfJ4lFJIAcIUAbxmQTKID4BcjoJkICWBCiDaJl2Bk0CJBBgApmWQWKug1fb12J2SwNea1+HTvlYjaMKhmB6eS0uLq3CABE+OEiABEiABJInkFYZpDMKa1U9zBW7W74Yu7bvd0h3yHCp+DFZWr5I1Q/V9mX0BMC0kg+GM0iABEiABEAZhDcBCZAACQSLAGWQYOWT0ZBAuglQBvFJmDKIT4CcTgIkoCUByiBapp1BkwAJBJhApmSQJVL5Y7ZUAHlCKoFslYogagyVCh+XlVZjRnkN6sIDA0yZoZEACZBAZgikSwYJvfsywo/fKy1fmvcOJBSGPbZW5A+RPlS7F3m4AwZlJljuQgIkQAIaEKAMokGSGSIJkIBWBCiDaJVuBksCvglQBvGJkDKIT4CcTgIkoCUByiBapp1BkwAJBJhAOmUQ1QZGyR+qDcyirjYwYcPEmcWjMaOsFmeWjIYFI8B0GRoJkAAJZJZAqmUQY9smFDx8B6wlH3qBuOUD49JHT8uXyZkNkLuRAAmQgGYEKINolnCGSwIkEHgClEECn2IGSAIpJUAZxCdOyiA+AXI6CZCAlgQog2iZdgZNAiQQYAKplkG628AoAUS1g+luAzOpYBCml9bg8rJqDLaKAkyUoZEACZBA9gikTAZxXYReexLhZ34DI9IBt6wCnTNuRuyzp2UvOO5MAiRAAhoSoAyiYdIZMgmQQKAJHEgG6YgA3/9RyIv92mtsjBvrZpTDyMrijO7HzUiABBIjQBkkMU4HvIoyiE+AnE4CJKAlAcogWqadQZMACQSYQKpkkO42ME+2rsAWu90jNtAsxEWl46UNTB2mFlQGmCJDIwESIIHcIJAKGcRsWoWC3/4Y5up6L6jYZ09F5/SbvaogHCRAAiRAApklQBkks7y5GwmQAAmkm8CBZJD33jfx7Aumt/1hkxzMvMJJ91H2Wp8ySEZxczMSSJgAZZCEUfV+IWUQnwA5nQRIQEsClEG0TDuDJgESCDABPzLIdieCJ1ribWAWRrd6lNSPLk4pHiVtYGpwTsk4FEhbGA4SIAESIIHMEPAlg8RiCL/4J4RfekQMkBjcAYMQvepW2EdMy8zhuQsJkAAJkMB+BCiD8KYgARIggWAROJAMcte9IWzcFI9V/Zv+tltsVAzIXHUQyiDBus8YTXAIUAbxmUvKID4BcjoJkICWBCiDaJl2Bk0CJBBgAsnKIKoNzGvt60QAacCf92gDUxUuxxXSBmZ6eS1GWCUBJsbQSIAESCB3CfRXBjFX1Us1kB/B3LDaCy523FmITr8BKCnP3WB5MhIgARLQgABlEA2SzBBJgAS0ItCbDLJ2vYH7HrBQIj9KqZng4uOFBk4+0cFZZ2auOghlEK1uQwabRwQog/hMFmUQnwA5nQRIQEsClEG0TDuDJgESCDCBRGWQ3trAlBohXFBa5VUBOa7okABTYmgkQAIkkB8EkpVBjI52hJ9+CKHX5wKuC7eiEtEv3gZ7yrH5ETBPSQIkQAIBJ0AZJOAJZngkQALaEehNBpn7rIUPPzJw0gkODp/i4J77QiguBr5zawyhUGYQUQbJDGfuQgLJEqAMkiyxfa6nDOITIKeTAAloSYAyiJZpZ9AkQAIBJnAwGUS1gXlStYFpbcQnkXgbGDWU+DFTBJALS6pQbGboJxMBzgFDIwESIIFUEUhGBjGXzo9XA9mxxds+duK56Lz8erhFrO6UqnxwHRIgARLwS4AyiF+CnE8CJEACuUVgXxkkGgV+dEcInfJ827dsDBzo4v7fWFizxsBFF9g4+jOZaRVDGSS37hOehgS6CVAG8XkvUAbxCZDTSYAEtCRAGUTLtDNoEiCBABPYVwax4UobmLWY0xxvAxOVtjBqqNYvV4gAMrOsFuOkJQwHCZAACZBA7hFISAZpbUbBo/cg9PdXvACcQUMRvea7cOqOzL2AeCISIAES0JwAZRDNbwCGTwIkEDgC+8og731o4tnnTFSNd/GVq20v3oXSJmbOExaGDnHxzRvjn0v3oAySbsJcnwT6R4AySP+49cyiDOITIKeTAAloSYAyiJZpZ9AkQAIBJtAtg8xr2SIVQJZ5lUA22+1exEWGhbNLxnptYE4uHgkTRoBJMDQSIAESyByB0Huvwdi0FjBMuKb82SrPhmnKc/y1Kw/v9R6f2/fjnnnqz2a5zpXrDcvCwLJCbG+LxYNR63Str+Yb2zcj/MT9MFp3eV+OnfoFdF78NakGInWoOUiABEiABHKOAGWQnEsJD0QCJEACvgjsK4PcdW8IGzcBV1xqS4uYeBUQW34n56c/D6GlBbhGBJEJIoqke1AGSTdhrk8C/SNAGaR/3HpmUQbxCZDTSYAEtCRAGUTLtDNoEiCBgBJQbWBe7lyF321figUdu9vATC2oxIzyWlxcWoUKszCg0TMsEiABEsg8AbNxoVeVw1xdn/nN99jRHToCkaulGkjNlKyeg5uTAAmQAAkcnABlEN4hJEACJBAsAnvKIOvWG/j1AxZKpEvjd26NQbzunvH6WyZe+4uJSRMdXDkjXrE1nYMySDrpcm0S6D8ByiD9Z+fNpAziEyCnkwAJaEmAMoiWaWfQJEACASKg2sD8pU3awLQ04pX2NT1tYIZYxbi0bAKulDYwdeGBAYqYoZAACZBA9gkYm5tQ8NT9sD56yzuMO2wk3IFD0nKwgpCJaOzAPzC2xx2Kzgu+DBQUpGV/LkoCJEACJJA6ApRBUseSK5EACfSfwM5mA088YWLGdBslLCjXf5Ayc08ZZO6zFj78yMCJ0xycfdbe/35vk4Ktt98R8qqE3HaLjYoB6a0OQhnEV1o5mQTSRoAyiE+0lEF8AuR0EiABLQlQBtEy7QyaBEggAATqO3dgVnMDnmjd3QYmJK0Fzi6XNjDlNTg1PAoh1U6AgwRIgARIIGUEjPZWhJ7/A8Kvz5WeLDG4ZRXovPAaxE46L94CJsVDdZYZPqgYTdvi7b44SIAESIAE8psAZZD8zh9PTwJBINDUBPz+TyG0tgKHT3ZxxWV2EMLKWgzdMkhbh4sf/zSEzk7glptsVFbuL3s8MdfC/AW9yyKpDoAySKqJcj0SSA0ByiA+OVIG8QmQ00mABLQkQBlEy7QzaBIggTwloNrAPNWy3KsC8nF0dxuYiVL5Y0ZZDS4rq0ZtRQXaozF0RNNfdjRPMfLYJEACJJA8AdtG6I25CD//MIzWZqiaz52nX4zY+VfDLZI60GkalEHSBJbLkgAJkECWCFAGyRJ4bksCJOARWFpvYo5UBOmM7gZy1UwbE+vSW6UiyPi7ZZC/vQ8885yFqvEuvnJ174JN0wbgnvtCKCqSNjLfjiGcxsJ+lEGCfNcxtnwmQBnEZ/Yog/gEyOkkQAJaEqAMomXaGTQJkEAeEehuA/NoayNebtvdBqbCLMAXSqsws7wWRxbsbk0wqKyAMkge5ZdHJQESyH0C1vx3EH7yfpib1nmHtacch+jl18M9ZHTaD08ZJO2IuQEJkAAJZJQAZZCM4uZmJEACexD467smXnwlXslu6hEuRo5w8cJLJkpLVSWLmCcocCRPoFsGuevXJtY3Gbj8EhtHHH5gueaB31hYvcbAhec7OObo9P0SD2WQ5HPJGSSQCQKUQXxSpgziEyCnkwAJaEmAMoiWaWfQJEACeUBAtYGZ3dwobWCWYZMdbw+gfmxzUvFIzCitwbml41BoWPtFQhkkD5LLI5IACaSWQOsuGB3tMCLyZ6U8S8csuCPGS8UOfw3QzTWNCM/+Faxli7zzOsPHonP6jbAnHZ3a8x9kNcogGUPNjUiABEggIwQog2QEMzchgZwj0NYGbNthYMd2YMdOA9u7nnfsAHbKx0d/xsGZpzkoKEz90R3xDZ553sKHH8k/kmV87gwHp5wUlxDue9DC2nUGPnOki4u/wHYx/aGvZJCF9RH88h4LJVIw8Du3xlQRwQOOhYsMzHncwtAhLr55Y/qYUwbpTzY5hwTST4AyiE/GlEF8AuR0EiABLQlQBtEy7QyaBEggRwnslDYwT7auwJzmBizYow3MuFA5pksLmOlltRgZkl/bOcigDJKjyeWxSIAEEiZg1s+HtfB9T+7wBI9uyUN97Ekf8tN09Vq1aznIcAcMgjtsFJxDxsAdOhL2yPGAPCup42DD2LEV4acfQujdl73L3NJydF7wZcROuyjhGFJ1IWWQVJHkOiRAAiSQGwQog+RGHngKEkg1ASV7KLFj2w5T5A5gu7zevof80dnZ945lZcA5Zx28qkTfq+x9RUcEmP2ohWXL4yLI9MsdTDlsdzWKrVsM3Hl33Fy45ks2JlSxXUyyjJUM8uAfO/HeBwZOnObg7LP6rvbxkzssNLcYaWVOGSTZTPJ6EsgMAcogPjlTBvEJkNNJgAS0JEAZRMu0M2gSIIEcIrBnG5hXpA1MxI3/4KDEDOH8kvGYUVaDaUXDEz4xZZCEUfFCEiCBXCMQjaBA2rGEXp+b9pO5Q0fAGTZaxJBxIoyIICLCCAZWwnrvNYSff7hn/9jpFyN6/tWACCHZGJRBskGde5IACZBA+ghQBkkfW65MAtkiUN9g4OFHDlIKQg4WCgODKlwMHiSPSvlnZwVQOdhFWD6v9Iv3RSRYtDjewqVqvOu1EBlS6U/MUBVI1Lk2bQKKpWDel66yMXrk/mu+9Y6JV1415Uwubr7eTkt1kmzlJhP7Diwtwj/9RwzyXxlpt2OjMoG8vfm2iT+/ZmJinYOrZvYtj/QnDsog/aHGOSSQfgKUQXwypgziEyCnkwAJaEmAMoiWaWfQJEACOUBAtYGZI21gHt+jDYw61jGFwzBTKoBcWDoepab8ZCjJQRkkSWC8nARIICcImI0LUfi7H8HYssE7T+dZ0+FWyE/KVauXwmK46lEkdZflY7ew61l9fJBa2sbWjTA3r4Oxca2sux5m0+r4x5vW9xmzfdhn0Xn59XBGjOvz2nReQBkknXS5NgmQAAlkngBlkMwz544kkG4Cv3s4XnlDVfYYLILH4IEifoj0MXCgK8KHvJbn8gS8YiWVPPO8qiwSr+KhWrmcerLjCSPJjrXrDfxRRJDWVmDYMOCLV9qe7HGgcc/9ITQ1Accd6+D8c9IjJyQbQ75c31hfgN/PcjyJ5ytXJ9b2RVWS+eHtIS/EW79pe/dLqgdlkFQT5XokkBoClEF8cqQM4hMgp5MACWhJgDKIlmln0CRAAikg8FFkM15vX4dWJybVPGLogI2IY6NDXkfgoEM+f7AfobzbEX/DU40RVgkulTYwSgKZEB7g63SUQXzh42QSIIFME4hGpSXLbxB+9TFvZ7tqEqLX/LPX3iWdw9y4xpNCzA2rvGdjszzkc0ou6bzsG7CPmJbO7RNemzJIwqh4IQmQAAnkBQHKIHmRJh6SBBImsFnarPxS2qyYUtTj1m/ZqBjg7019+acxXnvdxLt/N+HKUkrgOPdsF5MOTVzQWLzExGNPmojF4lVGrprRd7UPVT3krl+HvD2vu1YqiIzyF0fCAANw4UO/DWPlaheXX5Jci58nn7Ywb76Bacc7OPfziec3UWSUQRIlxetIILMEKIP45E0ZxCdATicBEtCSAGUQLdPOoEmABPpJYIvdjtktjXikpQErOnf1c5Xd0y4qrcLlpdU4o2S077W6F6AMkjKUXIgESCDNBMxVS1H40PfjlTpCIUTP+xJiZ8+E99N0Do8AZRDeCCRAAiQQLAKUQYKVT0ZDAk89Y+GjeQaOmCIywKWJVYVIhFqT/O7Ik0+HsKHrd0hqquOtY1SVkYON7vYj6pqjPyNzzrMT/qe1ahWjWsao9jU33WAjdPDON4mEEfhrNmwE7haJpqgQ+Od/isFKgpnK8T33hVBYAHz3thjC8pzKQRkklTS5FgmkjgBlEJ8sKYP4BMjpJEACWhKgDKJl2hk0CZBAkgSebF2Ox1uW4S9SCaR7FJshXCwyx/hQOQoN+c+/YfU8uj8uVJ+T6wphytfk2ey6BhbU/HQMyiDpoMo1SYAEUkog1onwM79D+M+PAo4jrVjGI/q1f4MzcnxKtwnCYpRBgpBFxkACJEACuwlQBuHdQALBIdDWDtx+RwgxcUBuuC6GEcNTG5uq0vG390y8+hcTqmKIuNNe65iTTnT2EzVsOYMSUxZ8bHgy8efPdHDiCclVm1Bx/OpeC9u2GjhxmoOzz0pufmqjz4/VnnnOxPsfmv3m9cBvLaxe8yEVqwAAIABJREFUbeD8cx0cd0xqeVMGyY97iKfUjwBlEJ85pwziEyCnkwAJaEmAMoiWaWfQJEACCRCYF9mCOVIB5OnWldjhRLwZqnPvtKLhmF5WgwtKxqdN6EjgeAe8hDKIH3qcSwIksCeB8CtzYL39POzDp3ltU5yaKb6rdhhrlqHwwf+DatOifk2x86zp6Lzgy/GfbnPsR4AyCG8KEiABEggWAcogwcono9GbwOtvml5Ll3FjXVx7TeqqguxLdecuA8+/YGDJ0nj1vMGDpOLHBQ6qq+JVQjo6gIdnxaWCcBiYfpmNiXX9a/OyZp2B+x+0PKHk+q+nXnAJ0h2j2vD84PYQOkXUufWbUrVlUPIyx8JFBuY8bslcF9++2fa4p2pQBkkVSa5DAqklQBnEJ0/KID4BcjoJkICWBCiDaJl2Bk0CJHAAAqoNzBxpA6MeDZ07e64aJ9U/riirxoyyWowMleY0P8ogOZ0eHo4E8oZA+OnfIvzCH/c+b3EZYlOOhf2ZU+BMOhpuYVFS8XjVQJ5/2JvjDh2ByDXfgzNhUlJr6HYxZRDdMs54SYAEgk6AMkjQM8z4dCFgy/v+t/8shNZWYOZ0B4cdmrwIkCyrpfUGVCWKXc1xY2DyJAfHH+fiqadNbN1moKwMuPqqGIYfkuzKe1//7PMm3vvAxNAhLm683obFDo69AlXtgVQ1lrpqA1/+Ugy2k7yAo6q//ETuo5YW4Ev/YKO2Jvk1DpRtyiD+vg84mwTSRYAyiE+ylEF8AuR0EiABLQlQBtEy7QyaBEhgDwIR18bLbatFAFmGN6QNjI34f75Lpa3LBdIGZrpIIMdLNZB8GZRB8iVTPCcJ5C6B8GO/RvjVx7wDRq75Z5g7t8Jc8FdYyxfvdWh7soghRxwPe+qJcCsGHzAgc/1KFPz2RzDXNHrXxM64BNGLrgUKpLk2x0EJUAbhDUICJEACwSJAGSRY+WQ0+hKYt8DAk3Mtr0rHt7+Zvqog+xKOSBWKV18zvfYxew4lgFx1pY2KAf5lgqgURv3FPRZ2SUWS0051cIY8OPYncN9DFtauNXDtl0xMqO7slwyiVn3rHROvvGqirtbBF69MHWvKILxrSSA3CVAG8ZkXyiA+AXI6CZCAlgQog2iZdgZNAiQgBD6KbPYqgDzdugI7HfmJigz1+zUnFI3wqoDkahuYvpJHGaQvQvw6CZDAwQgUzP4VQq/PhVtQgMhN/wen7sjdl7fuQmj+O7A+fhfmpx/CUM3Lu4Yzrg6xqSd47WTcURPin3Wkn/lLj6BAVQOROspuRSUiX/2XvddkOg5KgDIIbxASIAESCBYByiDByiej0ZfA3feFsGEDcN45Up3j2NS9gZ8o0XXr41UpNm6EV01ihrSGSaVn3dBo4A9/srzj3PgN/9VGEo0rX67buAm4694QiouBn38/hC07I/2WQdragB9Kuxk1brnJRmWlf6FHrUUZJF/uJp5TNwKUQXxmnDKIT4CcTgIkoCUByiBapp1Bk4C2BFQbmNldbWAa92gDMz4sbWBKqzGzvA7DrZK85kMZJK/Tx8OTQFYJ9Igg0v4lcvMP4NRMOfB55FcGrSUfwpKKISF5oK2551q38hDEDjsG1rKFUFVB1LCPPRORmTcD0mqGI3EClEESZ8UrSYAESCAfCFAGyYcs8YwkcHACK1Ya+M3vLRRJx8TvfDuGcEH2iC1cZGDK5NTIA/tG8fiTFhZ8YmC4FEq98bpY9oLMwZ2fe8HE3983Me14B9fMKPAlg6jwnnrawkfzDU8sUoJRKgZlkFRQ5BokkHoClEF8MqUM4hMgp5MACWhJgDKIlmln0CSgFQHVBubF1tV4tLURb7av72kDU2aEpQ3MeGkDU4Pjinw21c0hopRBcigZPAoJ5BGBgj/+DKG3n4dbWILot34Ae8JhSZ3ebFzoVQyxFrwDc9O6nrluWQWiV90K+8gTk1qPF8cJUAbhnUACJEACwSJAGSRY+WQ0ehL44ywTS+tNnDjNwdlnpeaN+1wkqSpW3HlXCO3twOfOcHDKScGNNRn+UvAQP/5pCB3STudbUsljck2hbxlk8xYDv7zbQjgM/Ms/pkYwogySTFZ5LQlkjgBlEJ+sKYP4BMjpJEACWhKgDKJl2hk0CWhB4ENpA/NocwOeblu5VxuYE6UNzPTyGpxXPA7FZrwUZ5AGZZAgZZOxkEBmCBT8/icIvfsy3OJSRL4pFUGqJvna2Fy3AuYnf/OkkM5Lvga3fKCv9XSeTBlE5+wzdhIggSASoAwSxKwyJp0IbNtu4Oe/tDxh97ZbbFQMSE9Vjlxh+slCA48+YcGSjjE3X5+6Fia5El9/zjFPKng8KZU8xo11ce01Ng4ZVORbBlHnePC3FlatNnDu2Q6mHedfvKEM0p/scg4JpJ8AZRCfjCmD+ATI6SRAAloSoAyiZdoZNAkElsCmWBvmSAWQOc3LsCy2syfOKq8NTA1mlNfmfRuYvpJHGaQvQvw6CZBADwFHeov/5ocIffA63KISRG77KZwxNQSUQwQog+RQMngUEiABEkgBAcogKYDIJUggiwSee1Hag7xnYsoUF9MvtbN4ksxt/fAjJuobTIwe6eLr19qeCKPzuO8hC2vXGrjsEhtTD3dTJoMsXGxizmMmBg1y8e2b/XOmDKLzXcrYc5kAZRCf2aEM4hMgp5MACWhJgDKIlmln0CQQOAJvtK/DvbsWeW1gukeJVP24oGQ8riyrxbEBagPTV/Iog/RFiF8nARLwCNg2Ch/4X1jz3wFKytHx7R9TBMnBW4MySA4mhUciARIgAR8EKIP4gMepJJAAgbXrDFRWuiguSuDiJC/p6JD2ID8LIdYJXP+1GEaOTHKBPL18Z7OBX9xloTOKlFWtyFMU6G7nou6v731X+sXISFVlELXW7T+zsEt4f/FKG3W1/qrOUAbJ17uM5w46AcogPjNMGcQnQE4nARLQkgBlEC3TzqBJIKcItDqdmNu6As9KO5dddhQdsNHhysOJIQJHXsfQJq8THSd1tYE5X0SQIkNqmWo2KINolnCGSwL9ISCNrgvu+y+EPvk73LIKRG69Hc7I8f1ZiXPSTIAySJoBc3kSIAESyDAByiCpA75wkYEpk/29WZq603ClbBOIiqDx6usm3n3X9N5EV2+mp3q881cTL/3Z7GkPkur1c3m9Dz408PRzFsJhaRdzg41BA/X83nteKsP8TSrDTDvewbmfj7dySaUM8tY7Jl551URtjYsv/YO/e5gySC5/R/FsOhOgDOIz+5RBfALkdBIgAS0JUAbRMu0MmgRygsBbUsXjkZYGTwRJdCi5o8gIycNEkVT+KIT62EKJGcbJIoFcUV6DkVZpossF8jrKIIFMK4MigdQREBGk8O5/h7Xkw7gI8k8/g3PImNStz5VSSoAySEpxcjESIAESyDoByiCpScGfX5M3/f9u4h+/HUNJcWrW5Cr5S2DFSgNPzDWxc+fu/iWf/5yDk06Iv1mfqnH7z6Vqwy4DM69wcNik1K6dqjOmc50Hf2th1WoDVeNdfOVqf6JCOs+ZrrU7RTj6iVSGURVivnmjjaFD4kJMKmWQtjapDvJzqT4jvw/1rZtsDJEqN/0dlEH6S47zSCC9BCiD+ORLGcQnQE4nARLQkgBlEC3TzqBJIGsEVsea8UhzAx5taUSTLf/L7RqHF1biitIaTJXnIhE8Cs249FGIuPQxwCzI2pnzbWPKIPmWMZ6XBDJIQGo7F97zH3ERZMAgRG77KUWQDOLvz1aUQfpDjXNIgARIIHcJUAbxn5uVqww89Lt4BUj1Zr96059DTwLqTfmX/mzhw4/iEoiqVjGxzvUqN6jx9WttjBnV/zfT96S6aImJ2Y+aGCh73PYt/UQIxWLrNgN33Wt5osJFF9g4+jOpYZsvd+/8j0U6esrarzJMKmUQxWLus/F7+rhjHJx/bv//fKMMki93Fs+pGwHKID4zThnEJ0BOJwES0JIAZRAt086gSSCjBFQbmKdal2NOyzJ8ENnUs/cIqwSXllVjZlkNJoQrMnqmIG9GGSTI2WVsJOCDQDSCol/9G8yGBZ4I0vFPd8IdOsLHgpyaCQKUQTJBmXuQAAmQQOYIUAbxx7pd3vy/6x6pztC8uwLEd26Nobzc37qcnX8EltYb3pvmLS3xs6u2HWee7qBA2pi88FK8csyAAS5u/Iadkuox9z1kYe1aA+ee7WDacf1/gz7/SO994nekDc9Lr5gIy+/rfOPaGIYNzfeIEj//A1IZZbVURrn0YhtHHrFbhEm1DLJhI3D3r0MIyb38Xfnzrago8TPueSVlkP5x4ywSSDcByiA+CVMG8QmQ00mABLQkQBlEy7QzaBJIOwEHLlQbmDlSAeTFttXocOO/OVMq1T7OLR2HK0QCOUHaupjY/UO8tB9Kkw0og2iSaIYZXAJSvcPcsBpG0ypY8lDP6mFu3+xJHO7gYXAHyUOeHfU8aGj89WD5SWxxWa9cjI42FPzye7CWL4Y7sBIdt/2MIkie3EGUQfIkUTwmCZAACSRIgDJIgqAOcNkjc0ws+dTEiOGQN0hdqPYgxxzt4MLz9X1z3h/R/Jut2mg8/6KFjxfGf5ZQOdiVN+cdjBm9d5WKe++3sL7JQF2tiy9e6a+Sx/r1wL0PSLvaQkDJR0qE0Hncc38ITU1xAkqMOUMknMKAM9m8xcAv77ZQLGLG974rpVH2GKmWQdTSqvqRqoJ0zucdnCCikxri9qO1zUCLfA+0tcpr9ej6uL3VkNdAi3puddHZKef9odgkHCRAAjlHgDKIz5RQBvEJkNNJgAS0JEAZRMu0M2gSSBsB1QbmT9IG5rE92sCoAq0nFY/E5SKAnFc8DsXS9oUjfQQog6SPLVcmgZQSiIr00bQChogfVtMaGOtXiAQi4sfmrp+s9mMzt7AkLot4wsgQEUTir8OvPw1z5adwBg5B5B9FBBki76Bw5AUByiB5kSYekgRIgAQSJkAZJGFU+1340XwDTz1toUDedL5Jqj2Y8h/Nn94Zbxdz2y02Blbo1bKi/yTzd+aCTwxPBGlvj8dwyskOPiciQm9j+w4Dd0tLk0gUOOcseUN9Wv+FoUcft/DJIgMnyhpny1q6D8V27jMmlq+ICzklJZB2TTY+c2Rwvwe7q80o+UVVh9lzpEMGWSxtiWZJWyI1KuTPtlaRPFR7nmTGA3dSBkmGF68lgUwRoAzikzRlEJ8AOZ0ESEBLApRBtEw7gyaBlBJocaUNTItqA9OIDyObe9Y+NDwIl5dX47KSCRgWkp8OcGSEAGWQjGDmJpoSMHZuE1lDfjXQSfIncV28rFX1MBo+jlf82LLhgBSdYaPhDh8DZ9QEeR4rEsfg3de6LowdW2Bsl8e2TfJ6M0x5NrfJn7/tXXWye1nZHTJCKoL81KskwpE/BCiD5E+ueFISIAESSIQAZZBEKO1/zdat8sb+fZb8tjtw2SU2ph4ef9O5+w1a1bJBtW7gCCaBnbsMPP2siYbGuHygKsNc/IWY93ywoarIqGoyanz9WhtjRiUvK6i9f/rzuHT0jyIdqTfmOeIEFN/nXzKwc2dXXqQD5QXnCOcxwWP0g5+EPAnpmzfaGDpk7/jSIYMovrf/bO+WWMXFSrxxUSo/XiuV55JSA6Wl8izVSkrkuaxUCkXKNd7X5eNxw+UDDhIggZwjQBnEZ0oog/gEyOkkQAJaEqAMomXaGTQJ+Cag2sC82dUG5qU92sAMtYpxcWkVLi+txpTCSt/7cIHkCVAGSZ4ZZ5DAvgSMjnaYUqnDWKeqdayGuXa5PJZJPd7mlMLaT/oYIeLHmJr+7yG1g82tG+KyiBJFpLWM92jdhejMb0qLmCH9X5szs0KAMkhWsHNTEiABEkgbAcog/UPb3fLj8Mkurrhst/TRIh7sj++IV568+YYYhtF57R/gHJ713vsmXn7VhBTV88ZZZzo4+cTEq3N0C0OqcswNUlFGtflIZrwie7/1jokpU1xMv5TCUW/s3nzbxOtvmYiJrKXGVJGzzpZKIWW9d7BMBn9OXKtaEj32hIWxY1187Zr974F0ySBbpTWNLb8IUCJOR39YjqykDJITNxAPQQL7EKAM4vOWoAziEyCnkwAJaEmAMoiWaWfQJNBvAis6d2FWSwMeb1mGJlsaksooMix8vmSsCCATcFrJaFiI/1YIR3YIUAbJDnfumr8EzDWN0qplFaz1Uq1DSR9KAhGRorfhSl1yd2QVVDsWWBZceRiG/LZhKATXlNfyUJ+DpT42d38s7bEMdb00GHeHjoIt0oc7ujp/ofHkGSNAGSRjqLkRCZAACWSEAGWQ5DH/+TUT6s3mgQNd3HS9jUJpE7Pn6P76YYc6mDk9cUkg+ZOkb8a27QaU2LKrOf7c0go0d73u/lx5uVS3uCYG+eekFmOLVIN5SlqRrF4d//mCqjZx6YUOKvepypAIjG6ZaGKdg6tmJn6PREVu+OnP4xUhrvuajdEjg1fxIhF+iVyj7tOXXja9djpqhKVDyemnOjjphMR5J7JPqq/ZIS1v1PdbS4uB5hYXbdKOpbnre7C9zZBfgwK2bpXvR/m6qj6kqhDtO9Ilg/iNlTKIX4KcTwLpIUAZxCdXyiA+AXI6CZCAlgQog2iZdgZNAkkRUG1gnpA2MI9KG5iPutrAqP/eH1d0iFcB5MKyKpQZ7EWaFNQ0XkwZJI1wuXT+ElCtVaQti9m0Uqp9KOFjJcx18ti0BrB7+Q0/ETecQ6RNy8jx8hD5Y1SV99qtlFrU6t15DhLIEAHKIBkCzW1IgARIIEMEKIMkB3rlKgMP/S7eouNrX7Extpf2E23yRv3PfxFCRwS4/msxjByZ3B7purq9o/sNZiV2xF8r0UNJHurN5u7PqXMnOvJZeEk0RnXd23+VaiB/jrd3EecanzvDwQnH918q2C5v+N99r4WIVBc592wH045LbC1VleTZF0zvvlP3H0ffBJS88+yLFjZ0dcQcJBLXBec5qK3JnEijWvuo77U2+f2lXbuUXNUlfMhzq/rek0erfD8m+r03oNzFoEHAtb1UBVFEKIP0fV/wChIggd0EKIP4vBsog/gEyOkkQAJaEqAMomXaGTQJ9ElAtYF5o30d5kgFkJf3aANTFR7gVQCZXlaLkSFpSMqRcwQog+RcSnigDBMwdm7rkj5E9mhS0sdyGE1S9SMiP5HvZbhDhsMZIaKHEj7k2VHPIoJ4P3nmIIEsE6AMkuUEcHsSIAESSDEByiCJA1UyxV33WF61DFVhQD0ONN6QFhWv/sVE9QQXX/5iet+094QOVTlAVRIQyWOXPHe/wdz9OVVFIBZLLFb1T87yMhflA7qepbWGqgJSLm9Al8trKTYHR95HnytVMlQVg9OEwxkHYZHYrrl71ZNPW5g3Py5fV413cclFDlSLF79jyacmHpkTF0xuuC6GEeJ49zXu/JWFrdsMzLjCweRJiQkkfa2py9c/+NDAn/9ieUKGGnW1rifiVA7uXy5bpXrHLvl+a5NqHT2CR9f3YbyyR1z6UFVcEh2q2tAA+V4rU99/8r2mWrF0f9+pz6mvlSbwYy/KIIkS53UkQAKKAGUQn/cBZRCfADmdBEhASwKUQbRMO4PWgMCi6DZskjYuEddBhxNDBDY6XBsRx0a7G0MUDtrV5+Vz3ue9Z/Wxg055NHRuxwY7/r/oCrMAXyitwuVl1fhs4TAN6OV3iJRB8jt/PH3iBIyOdhhehQ+p9NEUr/RhyLPRvKPXRdzygfHqHntIH66SQIrYSzlx6rwy0wQog2SaOPcjARIggfQSoAySON9Z8sb9YnkDP5GqDKqdxx13hrw3nr/6ZRvjx/XvDee+TnffgxbWrku8Spx6s1mJHQPkjeUyJXh0vdms3mRWAoj6XEmC/xTdJF0M730g5Ekm0y93MOWw4MkJsx8zsWix6bUYufA8ackxNbV5fOElE+/+3YSqVnFjLy2H9sx/fYOBhx+xvPZEt30rvYJRX/ddvn5dCV2vvxFn3j1U25jTTnEg3Te94VXvEMljd8WcuGQVr54j4ocSrqTSR6JDtVFS32/q+86TO3pe7xY/1OcT/b5LZF/KIIlQ4jUkQALdBCiD+LwXKIP4BMjpJEACWhKgDKJl2hl0QAlsirXh8TZp59LciKWdvb8ZmkzoZxWPxozyOpxbMjaZabw2ywQog2Q5Adw+9QTkJ97GxtXS2mUFrHVS4aNL/jC2bux1L7ewGO6IcfEKH6rNizx70scAqe3LQQJ5RoAySJ4ljMclARIggT4IUAZJ7BZRlSFUhQj1hvHN8qa9ekO+r6HecFZv9o+Rlh5fT0NLD9UuRLUNUUNVqhgglTy6Kwp4woeq5NFdZSAJyaOvuPb8+pKlUt1itomQyBJf/0pi1S2SWT9b13aKzDPrMQsNImAUFwFXS3WXUSP7znl/ztst9PTVcud3D1tYttxIqq1Mf86jw5zNWww8J98/y1fEpY5iEaAKClzs3Jm45FFU2PX91iVVDRggMpVU7fC+Bz3hSsQP+Vy3ZJJJrpRBMkmbe5FA/hOgDOIzh5RBfALkdBIgAS0JUAbRMu0MOmAEnmldidktDfiLtHXpHkWG5VXxKJbnQjOEIlhQnys01bN8rF53Pbpfe5+Xr6s5UwoqMdCU/21z5B0ByiB5lzIeuJuA68LYssGTPgx5qGdT5A9z4xqpjd3Lb+NZltfOxRkZlz68ih/qecgIMiWBwBCgDBKYVDIQEiABEvAIpFMGUb+Br1qI5PvYutXA3fdZUILA9EttTJmSuBRw+8/ibWWummljYl3i8/piNv9jA088ZUFVHbjh6zaGVKZu7b723vfrKs+vyUPJJzdcZyfUxiLZPTJ5fTQK/FEqcKxYZaCkRFV2iWHY0PSdYIcICHffa6EjApx/joPjjt3/e2ajVGG5694QCiXf37k1hgL+aCQlCVGtep5/ydhLAlE5j7do6ZI65L5WlTvUQ93j6nnwoOx9vyUSOGWQRCjxGhIggW4ClEF83guUQXwC5HQSIAEtCVAG0TLtDDoABOZHt2BOcwPmigiyw5GfYshQv1MxrWg4ppfV4PyS8SgRCYRDPwKUQfTLeT5GbOzc1iV9iOzRJX4YTVL1IyK1hHsZ7pDhnvThqkofXfKHM1yqFokQwkECQSZAGSTI2WVsJEACOhJIlwwy61FpqbLE9MQJJVDk8/j1AxbWrTdw5BEuLr04uVg+/MjA3GctDD8EuPEb0k8lBaNpA3D/Q/H2LFfOcDBpYvaFm0ekhY56Y33kCBfXi5ySr0O1EfmDVOBYK/lW1V++crXjtXBJ91hab+KPs+JVXm64bv8KK089Y+GjeQamTXNw7lnZz3e6eWR6/TXSakkJIKrCThAGZZAgZJExkEDmCFAG8cmaMohPgJxOAiSgJQHKIFqmnUHnKYEtdjsebV0mEkgj6vdoAzM2VIYrRACZWVaLkSGpk8mhNQHKIFqnP+eCNzraRPZYKa1duip9rBfhQ1X+aNnZ61nd8oFx6WPUbunDVR8XSr1oDhLQkABlEA2TzpBJgAT2IrBBusKFQkZWKzGkMiXpkEFefNnEX/8Wf2NbjcmHOZhxeX6+gf3n10y8+bbpiQE3SXsYVZkh2XHnryxs3WYkXVWkt33a2oF7pUqJqiZx6skOzjw9N7iqahpKUFEVLI4QAejyPBSA2tqA3/xBYpDv8aFDXFzzJdtr95Gp8cIrJt591/SqTtzwjd33Wmsr8KOfxn+x5h9vsVEREGEhU1x13IcyiI5ZZ8wk0H8ClEH6z86bSRnEJ0BOJwES0JIAZRAt086g84hA1HXwUttqkUAa8XrbOtiI/+ZEqbR0Ob90vFcF5HipBpJ4p9U8Cp5H7RcByiD9wsZJfgnIr0oaG6TKR9NKae2iHnH5w9gmP6HuZbiFJSJ9jNtd6UPJH6Or5Q83ab7OQQIk0EOAMghvBhIgAV0JLFtheIJDQ4OB6gkuvvzF/K1+sGcOUy2DvP+hiWeeM1EQliqRUsXgY2lnsn2HgcMmOZh5RW6IC4newyulTchDv4tXffv6V22MGd2/qgGfLDTw6BMWKge7uOVmf/fNb/9gYbncizXVLq6+yt9aiXJI9DqV53vvt9AuwsrnP+fgpBNSn++GRqngIK06VKWVVA7Vyuc3vzehWgKp6iaKrWoXkulxn1ShUVVJJsv3y4yu75fuNjz5LFVlmqPu+1EG0f0OYPwkkBwByiDJ8drvasogPgFyOgmQgJYEKINomXYGnQcE5kWkDUxLA57epw3MCSJ+qCogF0gbmGK2gcmDTGb+iJRBMs9cqx1dF8bmpi7pYzmMpi75Y+NawOnlB+ShEJxDxsAZIbLHqN1tXlTbFw4SIIG+CVAG6ZsRryABPwSincDWLcCIEX5W4dxUElgkrU7efMuEas2x58iV9hx+Y02lDLK03pBWF3F5QskySprZucvAg78xvUoWkw51cOX01AsCezL4yxsm5s1X8onrtagZPbJ/AodqF3LXPRaUJHDGaQ5OO8Xfue+6N1414/+z95bRcVxp2+5d1S2WLFmSmTHgoB1m5kyYZjKTyQQmyWTohe/H+Xn+nLPWmfcdDDPDzIQ5TuKQnTiJQw6Y2TJIFnN31XmeXd0CW9Dd1S013DurVlVXF+y6dkmRu66+n4suCGPRwsT69NZiGx8ttU3ZkltvDqMwDYPqNmxUqcK7B669Joz58xK71r3v65YW4NU3bHz3vZc4M2+uixOPdzBzhv/jq8Ty0CPePTp9moufiwiSSAKM359F3b9R+nDHPQF0yP13wXkOjjrCwf/7pyA0teSmG0RImuL/epPRTx4jvQlQBknv8WHvSCDdCFAG8TkilEF8AuTuJEACOUmAMkhODjsvOk0JaBmYZ1vWmmlNd28JhRnBMhFA5uAqloFJ05FLr25RBkmv8cjk3liNdZESLyJ81Kj0IfLHjs2wOuXT0gGaWz1J0j4i0kdE/lARBAHvA2o2EiCB+AncaA4CAAAgAElEQVRQBomfGfcggVgJ6MO/P/05CBVCzj/HwdFH+Xv4HOt5ud3ABL5YYeFDKdmwR5ICtOVLeRB9MJtfALz7nvdA/o+/S69khkTGMlkyyPbtwAOPBNEt9+8lPwnj8MN6H1qrEPLgw7ZJCNl/Pwc/vSr597Y+LNf0jXXr+2dUjpWSGwcvcE3SQjyS1dP/tPG9iEDTp7u48Zf+x3nValtEGRtjJNXiv/4Y//G0L9qnPElc+fUNIYwfn8hoj8w+yz+z8crrXjrMr28Km5Irfpr+LL652BMk9m5TRY446QTX3FeJtN21Fh6WRJDmFssIJlddETb9Hs3WV6o69hgHyySRSK/zZpFB2EggFgKUQWKhxG1IgASiBCiD+LwXKIP4BMjdSYAEcpIAZZCcHHZedBoR6HTDXhmYlnV4v723DEyplYcLpAyMSiBaBoaNBGIlQBkkVlLcri8Bq3EPAt8sNfKHKfOydR3QLl8JHKC5ZRUifUjKh5Z2kbmmfria+lGQhl+X5DCTQIYToAyS4QPI7qc1gY9FPHjzbe9b7yoe/PG3IZSUpHWXs65zXZ3AZytsLF1mmYfD2rRUhJa7OGqRJ4Jou0dKOWyTUg6nnSqJEScm9hA6XeAlQwZp0PIgwkSFjJMlQeN0SdLYuxkhRNIX6ustkxahqRHJalu2WnhGRAlN8dAH+eeeHUazLH/7nQV92B9tVVWSFiJiyKEHu6iW5cHaCkkWeeGlgDnW7beFUVHuT2aInidaAuTcsx0ce3Ts941eg/Lt7oIptaMld9K9vfhKACpxqIzz6xul5EpR/D2uFRHrxZdtbNrsjeHsWa4kqzgoLXHNz+nHS3t/TlU4OUGSQg4/NPaxqqkBHn48aMraLJD74qrLkndPxn+1/fd4Xf5fsEz+nxBtV0rf9N5lI4FYCFAGiYUStyEBEogSoAzi816gDOITIHcnARLISQKUQXJy2HnRaUBgRedukwDyUusGNDryKZM0/cjluMJJuFLKwJxfPINlYNJgnDKxC5RBMnHUEuuz1dHulWmp2SSJHVtMegdam2GF5HdKVxesbnnCop9iy2R1yNOCOJvKHc6U2XAnzYAzUaZps+FMnQOUjInzSNycBEggUQKUQRIlx/1IYHgCf/qzV5JC5QN9qL7wcBcXX5g+DyeHv4LM3aK1FVgq377/VBIN5E8W0/QhtkogRy7a9wHs1m0W7n0ggKDIAr+/PYxySXvI1OZXBtG0hvseDBjp4hApy3L5pYPfs41yfz8kCSF7kiiELPvUxutveg/NJ8l3Fq68PIyqyt7x0H59s9LCdyKGqFwQbRNl2wVStkZLyfTdvk62ufNeES8k4eRKuRZ9P1lt3QYLjzwWMD/j/yGyV1QuGur4nXI/3n1fANovvR/POiP9RZDo9Tz4SAAbN1mYNdPF9b+I73eZlvvRSVuRiCTnnCVpMwOIHl99beGDj+yesVVx5/jjXCw8zDEpKoO1LVssPPakpI3IP0/S9Xet/o7R3zXlck3/+fv4+CXrnuVxMpMAZZDMHDf2mgRGiwBlEJ/kKYP4BMjdSYAEcpIAZZCcHHZe9CgR0DIwz0TKwKztUwZmZp6UgSmZg6vL5mNiQD6pYiMBHwQog/iAl6a7qshhbd9kZA+rZjNsLdUiy/YeKYQeb8uTrz4H8+HqXL4G7ebJV25l2ZVPx92KcSJ/aOKHSB8igLjVTCWKFy+3J4FkE6AMkmyiPB4JeAS++sbCcy8EMHECcMG5Ydz/sFfSTMsCaHkAttQQ0LSKDz+2sOIrGyF5+K9NS4mceFwYCw50ob/zBmvPvRiAPojWb+vrt/YztfmRQcJy2Y887j3wnznDxXXXhoetxqdCyAMP2mhotDBntoufXR1GMBg/PZUk/vWcDS2/ou1ISW7RxI2hjrVT/lRd+b2NlSKGqFwRbTrmBy9wzJg//WwANTuAQw9xcdnFyR/XB+RnW5MuND1FU1SGa489FcCaNR5fFSqGuieHO9ZIv6+S1Z33BEzKzqKFmuoxPE9Nefn3i73lmVQwOu8cSRYZ4mMJV35F6n3wgfwsb5X9ten2x0qpraNkKtorLFDv10dFBNGfeU1o0fsmHZv+rNxxV8CkDx13bHr2MR25sU8AZRDeBSRAAvEQoAwSD60BtqUM4hMgdycBEshJApRBcnLYedEjSEDLwLzRuhnPtq7Fh+3bEYb34bKWgbmwdCauLJmLowrlU2g2EkgSAcogSQI5SoextqxDYPNqT/aQtA9Ly7bU7x60N86EaV5yx2Qp1aICR0W1CB7ytTyVO4IqeuRFhA9Z1gx8NhIggYwiQBkko4aLnc0gAnfcE8TOnZpqIEkFBzpGDFFBZOpkFzdLiYWRaJqIkSv/a94lUsAHHwVMYkS0aXqBJi/MmxubfNMi1ev+8vcguuSB8g2/DGPG9Nj2G4mxjOccfmSQ6H2qJTpu+lUYhTFW6OubEKKlP34qQoiWZIm17ZCflWf+KWkZe6QsjPw5qQk68ZbQ0BIh3/0oYsj3Fvb0EUO0D2MrXPzm19KnSFmgWPsVy3ZbpbyQlovRfv/H70NDlk95/0Mb77xno0L6c8tNiZVaiaVPqdxGxZr7Hgoa8eKC80TOOGJgqaFdEmbeWuyVltGmaRhaEmbunPh+rlT0+HCpbQQabfrPkCPknCcc46CszJNGnnjaE4hOEyHnlBiEnFTyGe7Yq+U6ZogIVMB/Ng2Hiu/3IUAZhLcDCZBAPAQog8RDa4BtKYP4BMjdSYAEcpIAZZCcHHZedBwEFrdtwYtSyqUmHH+JBT3NrlA71oUae854gpaBKdMyMDNRaHnfQGQjgWQSoAySTJojcyx79TcIfv0xAjJZdfJp+wDNGT8V7mSRPiZ50kd44nS406RkCxsJkEBWE6AMktXDy4sbJQLr1kvpCElX0AfQf/ydJ370FQ30QbeWMUhle/8DGy3yLf7zz83+b59vlvIQ9z/U+++e/ebrA2EXU0S8ibd9vMzGm2/bJtHltl+H4t09LbZPVAZ5d4mNJXLfaALDLSIsqbAQTzMJIQ9JQkiDV0bkWhFCNChuuPblVxZefk1SHQT3BOF+tZaFqYrv3Hufw4ghP9j4TsQQFUxUbJk21d8xh7qOJ56SRJM1Nk483sGZpw/8M7dmrVfGREsR3fyrkLnHMrVpEsuz//Z+5q77eRhzRADq2/T9194MmN972o4TceO0U524BKG92ajwtUSEr5V9hC9NWdKyK9rOP8fB0ZIawkYC2UiAMkg2jiqviQRSR4AyiE+2lEF8AuTuJEACOUmAMkhODjsvehgCH3XUGAHk1daNaHQiRax9UJsWLMU1pfNwRelcTA6W+DgSdyWB4QlQBhmeUTpsYX/7iQggSxH4SgSQ1qaeLrkFxXD2O1TKtcyGK8KHM0mmaXPTocvsAwmQwCgQoAwyCtB5yqwn8OgTAaxdZ+3zcHLpJzbeeMt72P7720P7lDpIFhg9t/ZB243XhzF9Wuoegierz4keR9NP7rg7gHoREFQCOftMF9U+RYK/3iEJFZIsMVTqQaL9HYn9EpFBVMh4/qWASV244boQJk9OrKcmIeRRrySIlkH5+TVDCyEvvtKbHKFlYS48P/kP8/XeUDErlU2TTe6UNCAtafMfvwuhtLT/2errLdx1XwAdkpZx+aVhaKmUTG+L35UyLh/Z5veYph1VVbpolFJBL70qKR4ivmhTueeSCxO/nwZipOWIPl5mSeKIlIKK+FqXXBTG4YdmPtNMvyfY/9QRoAySOrY8MglkIwHKID5HlTKIT4DcnQRIICcJUAbJyWHnRQ9AYEXnbrwkAohOO8PtPVtMChTjkpLZOLl4iknyCMCGllgOWjKXybyWJzVBs17mui7yusSOI3uXo0ICSSJAGSQ5IAOfLjaShls5Hu5YncbBHTM24YNbHW2wv1mGgE4rl8Pq7P0941ZNQOiw4+EcdDTC+y9M+BzckQRIIPsIUAbJvjHlFY0ugehDYS2v8d9/CO2TjPCPu4PQb7gfI99gP0++yZ7spg9j77wnAC3RoE0f0P7+9pEpS6Pne+9925RX0VIhI9GiMoEpA3KLlAGJIYliuH5FExx0DP/w26HLfgx3rNF4P14ZZP0GCw8/5slDP5M0j/3m+xu75mbggYcD2CMChIpIv/jZvuOi7z31TAA75WfBlIW5QMrCZLgg8U9JyvhWEjGOPtLpl8ijZYfuvV9+7qUq47FHOzj37OT/3I/GfabnfFwSUVZLIor+njn4YBcfSzmXbrlebZqQokkpqWptEqy6bLmNSSKcHHhA6s6Tqv7zuCQQDwHKIPHQ4rYkQAKUQXzeA5RBfALk7iRAAjlJgDJITg47LzpCYE13A55rWY+X2jZgY7d8KhZp1YEiXFg8AxeXzsaigvGieLCRQOYQoAyS+FjZOzYj8PFryFv6FtDW+zuh7xHd8ZPhVoyHo3JI9QS45VVwqybKumo41ZPkE/PeYudWc4Mnf3z5IQLffdavY878wxA+WOQPmZwJ0xLvNPckARLIagKUQbJ6eHlxo0DguRcD+OprCyed6OAMKYuwd9u4ycKDj3gP3n9zSwgTxievk/oQ9v6HgqjZAZM8sGOnZR5An3SC9OW01D8s3bxZyrWIBKBJAbfeHH+ZkXhJrFpt4YmnPZY3SQLKtCQmoDz5jI0fV9k46gjHJIRkUotHBlEx6b4Hg+iUhJULJJXjKEnnSEYzQsijIoRIQogRQn4qQkjkT9jvf7Tx/Au2OefEicBVl/kvC5OMPvs9hqbJaKqMtv+Q8lDRMjv/ei6Ab6S0ySxJSrn+upETs/xeTyz76xjee38Au2t7P9FQEewnFzioHOtPKorl/NyGBHKFAGWQXBlpXicJJIcAZRCfHCmD+ATI3UmABHKSAGWQnBz2nL7oraEWPN+63pSB+aGrvofFGDsf56oAUjILxxdNksQPKiA5faNk8MVTBol/8AKfvIW8j1+HvXZlz86uiB1u5TjvdVcnrNodsFoahz24W1RixBAUFMLeuKp3++IyI36EDjkWzgGLoNuxkQAJkMBwBCiDDEeI75NA7ASapETGn/7sPQz+7z+GUFY28L7Rh8PTJUHjxl8m7+FwVESZKN+Uv/FXIdSKCHK3JBJou/XmECbJg/dUtTYJJNNEkqYm79842oebrt83GSVZ529tBTRlRecnn+Tg9FOSIzFE+6dlPf78d28sU80uWUyix4lVBmlp0fvDG7PjjnFwzlnJZdhXCFFR51opGbPkAxvLpFyStiMXSlkYkQayqUWTag6TkiWXSumSTyS54rU3bIwpc3Hbr8OmRFS2tbo9Fu6+Vz7dkGE97+ww9NrZSIAEkkuAMkhyefJoJJDtBCiD+BxhyiA+AXJ3EiCBnCRAGSQnhz1jL3pHuA3ru5sS6n99uBN3N62EloPp2y4smYmfiABynoggbCSQDQQog8Q2ita29cj74BUElr8DLeESbaEjTkHohPPg7Hf4gAeyd2wBGmth1+2EVV8r0y5YeyKTLos4Em3O1DlwFhzlJYDMWRBbx7gVCZAACfQhQBmEtwMJJI/AW4ttfCRlEhYe7uLiCweXPPQh+V/uCKJbvlV/5aXJKY/xxQoL+iBaS5vcelMYYyPfyn/zbRsfL5NSChIudutNoeRd7F5HevpZG5r4MEEkECfsmqSAgxe4uEJSH1LRnnjaxqrVqb2uxe/Z+OBDG8mWdlLBo+8xY5FBuuTeu09SZHbu9EpsXH1FaqQMFU7ulyQcTQiJtnypdHqR/HwcnOFlYQYax0YRwv4nIoTp74AXXvaEoltuDGHy5FSP/Ogdf8s2C1XyOycbZZfRo8ozk0AvAcogvBtIgATiIUAZJB5aA2xLGcQnQO5OAiSQkwQog+TksGfcRb/cuhHPtqzFu+1bk9L3U4um4BIpAXNO0XSU2PJpFxsJZBEByiCDD6bV2SHyx2IEl74pqR0/9mzojpuE7pMvRuiYM4CSMf7uhtYm2CKHuJIE4lbJExc2EiABEvBBgDKID3jcNaMIqJzw+ZcWzj0zNQ+9tVzC//w5iA5xNn97Wxjjqof+drwKGipqlJW6+MPtYeTlJ45z+/beBBBNX5g/r/fcXVI65o67A9CkizNPd3Di8cm//qiIkif/7LlNysNoAKImBSiTc4T3cccm95wrZByjD9l/L6yrhmGdKFmVdf7yjwCaWyxcIdJOpsgLscggjz4RwNp1FqZOdXHzr1Ij7ES5qxDygJQP0gQJTYy58vIwqquyNz3i9Tcl/eRTL/1E2yU/CePww7L3ehP9+eJ+JEACsROgDBI7K25JAiQgf4q70ggicQKUQRJnxz1JgARylwBlkNwd+3S/8m86a40A8ryUc2lwer9pv7CgGiVWPvIk51S/xxPUuUx50LmFoMyD8gmnrg/K64C+NttamBQsgSaBjLUjBZHTHQL7RwIJEKAMsi80e9NqBD96FYHPlsDqjKSAyFOd8OEnovuE8+HMOzgB0tyFBEiABFJPgDJI6hnzDOlB4O77AtheY+FnV4ex3/zkfzy6VEpfvPGWLSKGI+UwYpMf/nZHALWSmHDSCQ7OOC22ffamqeVZ7hLxorHRwmknOzhFpr3bxk0WHpR0hqBUjPnNLSJPVCbv+utEsrlD2IZEOrlEymIcHikRsWathcee9FIRfvmLMGbPTM45Gxos/F3kFhU1LjjXwVFHJsYt1rvy25UW/vlcwJT5+J1IO5pqke5tOBkkWsqkUpIcbr5hZEqXaBqOlkxRISnbm8ov//v3oPmZ0PtT71M2EiABEvBDgDKIH3rclwRyjwBlEJ9jThnEJ0DuTgIkkJMEKIPk5LCn7UXXi/TxXMt6PNOyBt917enp5/RgKa4qnYsrS+dhsggdbCRAAoMTyCUZxGppBDrkKYsIHrbM3bB8qtunWa0tyHvlEdjbN/asdSbNQOj48xA67iygqJS3EgmQAAmkNQHKIGk9POxckgi8s8TG+x9439QvkjIqv7k1bB7uJ7P9z189IeN6ER9mxSg+bNho4aFHPWHi9yIaJCJpPPJ4AOvWW5g318XPfzp4wsNLr9j4fIWNGdNd3PDL5CVB3HGPV2rkICn5oSVv+rb3pcTKO1JqpahIStRIYkhFuX/mmjCxafPw15vMsb1fzrlZznnSiSLtnJoeD/b13mltBdo75E/VDgud8t2GNvGR9XV3l412+fO1tc2V15ZZ3rvpmGgiSFUWJ3Qk8x6I91h6328QCevGJP6sxdsHbk8CJJA9BCiDZM9Y8kpIYCQIUAbxSZkyiE+A3J0ESCAnCVAGyclhT6uLDsPF+23b8EzrGrzVtgVdrvcBXpEdxPlFM3BV2TwcWzhR04zZSIAEYiCQyTKI1VAHS0qsaJkVq36nWdYJbc2w2lpgdcin6J3tsFrl64vxNEkBCR11upSBOQvO3IPi2ZPbkgAJkMCoEqAMMqr4efIRILB1u4V77/eEi+nTXGzeYmHWDBfXX5c8IeKbby386/kAJk1U6SEU11U9++8AVn6XmNyw+F0bH3xkY2yFa2SLQhFdBmtdIgv87c4AmpotXHi+gyMX+ZcaouUwVPJQwaZggFI3Tz1r44cfbUwUNjdeH/KVrPHRUhtvLRa5RK7z9ltDKCuLC3XCG9fs0PQViVWR9sffhQ3v0Woqgbz6egC7dsffg+JilaFcI+ecc5Zjfh7YUkNAE3sc+RVTSi88NYB5VBLIMQKUQXJswHm5JOCTAGUQnwApg/gEyN1JgARykgBlkJwc9rS46A3dTZIAshb/lBSQHeHer0MtKhhnUkAuKp2NUisDcn7TgiY7QQK9BNJWBpGnHHZtjUgeu0XwENGjvhZ23Q5YDfK6Tl7LFG9ziyQpqKAQboF8el5YBLdQ5gXyCbq8duS1LrvjJyN85Gnee2wkQAIkkGEEKINk2ICxu3ER0FIi/7gngPp6C6dK+ZRjj3Hwj7tEiGiycLokPJwsSQ/JaCoKqDBwhSRjHCwJGfE0LZ/xl38E0S3hYz+72pESNrH16cdVNp58RspVyj9nbv5VCBMnDH/WVattPPG0bYSM3/4mjPIx8fW17xn6loHR9IPpkjgyUOuSMbhHZJzdUk7m0INdXHZJYhLOTnF377jbEzKuudLBAfvHxml4KrFt8cprNpZ/bmP//Rz89KqRPbf2UMsJvfmWhVVrvIQbHfc5Mx3589Qygof+WaqSjC5XjAmgpNhCGN0ifnjv5w8g6sR25dyKBEiABEhgtAlQBhntEeD5SSCzCFAG8TlelEF8AuTuJEACOUmAMkhODrvvi9ZyLj901Sd0nDanG39v/Bafd8onhpE2PlCEy0rm4BpJAZmTV57QcbkTCZCARyDVMojVKOkdmtIhkxtN7DCvNb1DnphIaRazrOVbrN4HD/bqb4YdIrekDG7VJLgVVXArx3vT2PFwKqr7SR9G8hAJhI0ESIAEsp0AZZBsH+Hcvr6XX7Xx2Rc2Jk9ycdMNYQTkOfqWbRbufzAAvfdvuD6MaVMSFyKU7roNFh55LGDKzvznH8LmuPG2Dz+28fY7NsolYeP3ImkEPedh0Fa3x8JdIrl0iUByuQgoh8QhoESTSObMdnHdtYmJGVqO5G93Bk1ZklNOcnDaKUPLEdrfe+4LoEPSSTSR4jiRcuJpIenmnXcHjBBx6CEilFycWL/jOefe22rSw1//HjRlWJSb8huJpudd8r7cxyKihAWbLffwosMcnCrMB0udKC0KwpYbsamtf3nDkegvz0ECJEACJJB8ApRBks+URySBbCZAGcTn6FIG8QmQu5MACeQkAcogOTnsCV/0y60b8M/W9XhHyrkko11QMgOXSwrImUXTknE4HoMESEAIJFMGsZrqYa9agYCIHCpz2Lu2Js5YviLpVo6DI3JHj+hRMa5n2amSfHIp58JGAiRAAiTQS4AyCO+GbCUQTa5QseI3t4RRVdn78H7JBzbeXWJjjCRj/Pa2gcubxMrlsScD0HMlIjlEzxEWt0FLuGiCiYoVKlgM1jTt5C4RK1SMOOoIBxecF59YoQLHX+8QqUEkg3hFEu2TKxgfeTyA9SLBTBWR5qZfxSbArFsv0ozsp79zrv9FGDOlVE+s7Y23bCz9xBuv38l4jVbKxfLPbLzyuo3Ksd59E/CqD6Wk6T3x6XIbSz600SECirYDJJXkrNNdVFUPzY4ySEqGhAclARIggVEjQBlk1NDzxCSQkQQog/gcNsogPgFydxIggZwkQBkkJ4c9rov+pGMHnm9Zj+dFAml1e2tsH5pfhTF2AYLyiaF8bIg8y0ZApqAsy3edZL23HJD3dVnfy5P1uq0mgVwsZWDGyv5sJEACcRKQPG97+wZJzBCRorxyn539yCAqf6j4Ya35yhNAdmze5/huyRigpBRukUzFkuRhlqUofKmsl7ItZr1s4xZLEW6ZdBsz15IubCRAAiRAAnERoAwSFy5unCEENE3hbyI8qPhw7tlSHubo/sKECg0PPRrAxk0WDjzAwdVXxCdURDGokPG3OwJGTvg//xky5VcSbSpXPCwJI0ERDH53exgVkhIyUHv6WRvf/2hj0iSvPEwiQsLX31r49/MBKSECSSIJoTiOSncfL7Px5ttSakau+be3SqmZQfo5UN/fFwnnHZFw9Lwq6GiaynBt8xZJcnnIsy5UPJk2dfh9hjtmou/rfaNlhrTkzdlnODj+uMTum+HO/90PkhSz2MIekYO0qXRz7jlOzCk2lEGGI8z3SYAESCCzCFAGyazxYm9JYLQJUAbxOQKUQXwC5O4kQAI5SYAySE4O+7AXvaG7SRJA1uG5lnXYEmrp2f6A/LG4uGQWLpWSLpODfLA7LEhuQAJJJBBYuRzB5e/C/uZjWJ3eVxDd/AK41VJWRVI13HGT4EiJleLp09EtiRvtYyRpY5ivZkblD/vHL2Cv+25A+cOZfxjC8w5GeP6hcGRiIwESIAESGDkClEFGjjXPNHIEnnzGxo+rbMyS9Inrrxu4pEizVJ77x11e2Y+LfxLGwsPilwyefymAL7+ycOLxDs483b8Y8PQ/RfQQEWCBCCpXDSCoLPvUxutvxidTDEZdUzo0rePgBS6uuCy2sis1NcA9DwThyKVq/7Sf8bbHnpIklTWWkVluuj40ZEkcLStzh5SHaWy0cIKIF2eJgDHabdNmCw887AlAf/xtCCVJ/CdrzQ7g5VcD2CqljLRVVblyX7k4cP/4rpsyyGjfJTw/CZAACSSXAGWQ5PLk0Ugg2wlQBvE5wpRBfALk7iRAAjlJgDJITg77gBdd73TiBUkA+bcIIF921fZsMy1YKgLIbFwmSR7z8ioIjARIYAQJ2Ku+RPDzJQiu+BBok6cicTZNDnFEFoHIIo7IIkYakTz2wOpvYa+R5I+d+5Z8MvLH/ENEAFH545A4z8jNSYAESIAEkkmAMkgyaSZ+rG3bLUyZHL+MkPgZs3fPaOqFSa6QUh7lUlpksPaDJGw8JUkbeZLocevNYVTLw/dYm8ok/9+fpQaNtP/+YwhlElTmt6n08FcpFxPqBn4ppVRmz+ztzxZJyLgvkpDxKxFc4imzMlC/Gpsk1UTOpWVnrr0mjPnzhr52CY7DXfcGULfHwqGHuLjs4tgEkr3P3SWCx933e2VuDjnINaVqBmv/fiGAr7+xMGGCJIn8ujdB0i9nv/s/+1wAK1daOOxQF5delBiHvn1oarYkCcSG3rvaNKlFywVpGaBEGmWQRKhxHxIgARJIXwKUQdJ3bNgzEkhHApRBfI4KZRCfALk7CZBAThKgDJKTw95z0Z1uGG+1bREBZC2WdGxHt+t9oFUVKMSFxTNxiQggRxSMz21IvHoSGGEC9oYfEPhCBJDPlsBq2tNzdmfaXIQOPxHhRafAHT/ZrLc6JGd993bYe3bC3rUNVt0O5NfvhLNrO7BjX9Fjn0vJy0d47sFw5h4kAshhZs5GAiRAAiSQPgQog4z+WGzWpIFHArhE0in04fRrL0wAACAASURBVDJb4gRU0NDyMJ0iLqhkoLLBcO3lV2189oWUXZHAs5tukKQKryLJsG3xuzY++MhOmhAQPeH7H0oplfdsjKt2TSkV2wZaJEjxjnuCaG1FUsuTLP/cxiuv2aZcy+9EnJFAuEHbcy8G8NXXFsZWeP0aJhxuSH4qlNx1TwBdIr0MVMZHd/5Bkl2ekoQXLYOj54tH1Bl28HxuoPfZX/4RRLf0/+YbwqaMSyJNBRu9h5Z+YiMkrouWGdIElOOOdXzxpQySyGhwHxIgARJIXwKUQdJ3bNgzEkhHApRBfI4KZRCfALk7CZBAThKgDJKTw44VnbvxbPMaPNe6Hq2u9y2uYjuI84pnSAmY2Ti5aEpuguFVk8AoEbC2rEPeF++LBPIerFrJoI40Z/p8hBeeiNCik005mFja2NJ8tHeF0NHlwKrfbY5n19aIKFIDe3cN3PYWOLMXwJ0n6R9zFsRySG5DAiRAAiQwSgQog4wS+Mhp29qAO+WhuCYDaPvZ1WHsNz+xB8ujeyXpcfaHHg1gw0YLC6T0yVUxlj7RB/r33B/Ert3Accc4OOes4dMYNE3jT3+VEjPizN5+awjjxyX3+v/y9wD21FumL9qnB0UW2rhJrmuQ8jF+zq4lT7T0yZGLHFx4/sDXvvI7C8/+27Nkbr5R5IckpNisllIxj0vJGG17J52o/PL3O70SPoPJIn6uORn7RqUdTfT5tTCJNv2Zbm2zjLjT0mqhTea6rkXXm2XLyD26ja6PNk0BOeUkB6Wl/ntHGcQ/Qx6BBEiABNKJAGWQdBoN9oUE0p8AZRCfY0QZxCdA7k4CJJCTBCiD5M6waxmYfzavxTOSAvJjd7258HzLxqkiflwiAsiZxdNRaMX4VbvcwcYrJYF9CbQ2I/jVRyJuiLzxwxdwCyQrurAIbqHMCwpluUTWFcpU5K3X94tkypd1ZjtZL+t0Hli7EgEpA2PXbOo5jzNzPxFATkJooQggVZK7HWfrK4PEuSs3JwESIAESSDMClEFGd0AeeTyAdestFMn/ulUs0HIl+mCcJWPiH5dln9p4/U3bPEz/7W0hFMmfTLG2Xbu0dEnQpDP8/KdhzJs7tJDzyXIbr71hm9IqWmIl2W3NWguPPRkwSREHHuDiKymVUlXpmlI2fhI5BuqnSif/uEtK08i13/DLMGZM73/tWrrm7/K+pliccZqDk04YXpaJlceSD2y8u8Q2ZVFu/bWU9JGEEm167cpglpTJuV7K5aRr+5+/BqB8NC2lq9sTQOJtB+zv4KzTXVTFUaJouHNQBhmOEN8nARIggcwiQBkks8aLvSWB0SZAGcTnCFAG8QmQu5MACeQkAcog2T3sDlwsaduGp1vW4O32LeiKlIGZm1eOn5XOx1Vlc1FuD5E3nN14eHUkEDuB1iYEV3yIwJcyiQCS7BaefQCcw1UAOQlupb/STJRBkj06PB4JkAAJjB4ByiCjx17LQ2ipEX3g/5tbw3hfHoyv+MoyD8Zvuj6c1IfDo3eVI3Pm3bVSduReT2i47tow5syOP11luZSKeUVKxij/228JDZnQ8L9/C6ChwcIvRVSYLcJCKtpTz9r44UepESNNqu7hNkmfqJLSMaloHy218dZi2wgnv7+9v3xx7wMBbN1mYeYM14hKyW5PSimYH6UkzORJLm65KWxK9mjpHpVefvubXkEk2edNxvGipWz6HktlpGKRu0qKXbmXXONrl5aIt63rSlxZr+/rexbKy1MznpRBkjG6PAYJkAAJpA8ByiDpMxbsCQlkAgHKID5HiTKIT4DcnQRIICcJUAbJzmHfGmrBE82r8U9JAakJe/m2mvpxQfFM/LRsPo4ujD9tIDtJ8apIYHACVnMDAiYB5AMEVn3Zb0Nn7kEIibzhTJ217wHkc2OrU74+3NkGq6NdJvkZ7JQc7chrRNc5YYQPOALhRSKAjE1efjllEN7VJEACJJA9BCiDjM5YalkOLc+h7eorHEl/8NIWookIlWNd3HxD2IgJbMMTuOu+IGpqMGSpk+GPAjwlYoI+4FeZRKWSgdrK7208+y8bkyZKmsXNXjnMVLQGSZz4X0me0HbNlQ40QSKV7e77AtheY+HE4x2cebp3rncktUMlpUJJWVFhKZrckcx+dEriyD1y7to6C9MllaRG+qCle668NIyDDkqNLJHM/qsoo3xU9IgnjSaZfdj7WJRBUkmXxyYBEiCBkSdAGWTkmfOMJJDJBCiD+Bw9yiA+AXJ3EiCBnCRAGSR7hr3dCeG19k14unkNlnXskEwQr+2fN9YIIFeUzsEYW77CxUYCJDAoAaup3qR/aAqIvfYbwIl8sC9P45y5h0hyx4mmhIs7ZmzaUqQMkrZDw46RAAmQQNwEKIPEjcz3Dm3icP7j7iBaWoCjjnBwwXm9D/m1FMd9DwWxcydMUsINksSgqRBsgxOICgtjRaD5zS1SRkWSVhJtbeLa3nl3AE3NFs4+w8Hxx+0rYNxzfwDbtlu4/JIwDjk4tbKCihgqS5wlfUl1q9kBSVcJmtPccmPIlD158JGIsCQyyoEplFFUBFEhRK9V2yEigVwuMghbYgQogyTGjXuRAAmQQLoSoAySriPDfpFAehKgDOJzXCiD+ATI3UmABHKSAGWQzB/2r7pqjQDyYusGNDneJ3RFdhAXSgrItSKBLCrwV3Ii8wnxCrKZgLW7BnbNRljb1gO2RHUHpeyR5lYHZcorgKvL8pTG1df58l4wD66s121cWW/p+vZWBFZ8gOCXH4gAsrIfLmf+YZIAcoKkd5wMt6wiI1BSBsmIYWInSYAESCAmApRBYsKU1I0efyqA1WssTJRkidsGSJZobZWkBCnNoWVI5s118fOf8qH4YAOwRVIZ7hNW2m6WMipTJ/uXM/qmtqgUMXly79mj740Z4+K//pD6cdGEjDwfcku8N+4770kSyIe2KV8iAXNobrGwaKGLiy5I/bWuWm3hiacDGFPm4nZJIdG0DbbECFAGSYwb9yIBEiCBdCVAGSRdR4b9IoH0JEAZxOe4UAbxCZC7kwAJ5CQByiD+hr3DDWN5x0582L4dX4uUkfrvhO3bX00BibYD8sfiF2X749LS2Si1RvCTSX8YuTcJDE+gqxOBreuM9GHXbIK1eQ3srRukHItXBimZLbzf4ZL+cSJCIoCgZEwyDz0ix6IMMiKYeRISIAESGBEClEFGBHPPST5aauOtxbZJ+7j1pjCqqwaWFzQp4b4HA2iXpIqFh7u4+MLUP4wfWRL+z9Ytjvo/7gmgvt7CySc5OP2U5P1LqV/ayK8lbSSSzvLE0zZWrbZxzpkOjjs2eefzTyN5R/jrPwKo22OZA1bK/fkbuU9HKp1myfs2ps9wMXumf6kneUQy70iUQTJvzNhjEiABEhiKAGUQ3h8kQALxEKAMEg+tAbalDOITIHcnARLISQKUQeIf9i87a/Fhx3Z8JALIx31EjPiPlJw9Cq0ALi+Zg6slBeTwgurkHJRHIYFRJGDV7YS1fQMCm9fC3rZOpvWwdm0fuEdFpQhPmQlLU0GGaK6Ue7FEKIE8mbD06YQsWyH5Ome3ty58wCKEJQEkJCVgMlEA6XvplEFG8eblqUmABEggyQQogyQZ6BCH27JFBI+HvBSLK6UExkFSCmOo1nf70052cIpMbL0EXn7Vxmdf2Kaczi0iLCS76VjpGBx2qItLLwqjrtbCX+8MoFAC4P7rDyETCJeNre99d6sk10ySBBu2zCJAGSSzxou9JQESIIHhCFAGGY4Q3ycBEuhLgDKIz/uBMohPgNydBEggJwlQBhl+2Nd3N+IjkT7eb9+Gj9tr0OzKA+Q+bb+8CpxUNBnHF01CmaRx2LBgyyf3+l90OSCfJVuyTh9X63tmvdnCmwci6/QDf/OebB/dTvcLRI5pu7qHVwaGjQQyjYDV3ACrpUEyrZvM3HvdBLjewxNr1zYEvlkmaR/yNdsBmjtlNsKTpsORuTt9HpzJs+BWVGUahpT3lzJIyhHzBCRAAiQwYgQog4wM6vYO4I67Amhqjq/sxvc/2njmnzZc+dtdhQQVE9iANWstPPZkAAFxa26T5I5x1cnn0tho4e8yZl3i+F51hYO16yx8scLCCcc5OOuM7BZzXn3DRoWE1x0v18qWeQQog2TemLHHJEACJDAUAcogvD9IgATiIUAZJB5aA2xLGcQnQO5OAiSQkwSyTQZZ092AN9s2I1/0iWIRJrRUSqntTcWWvNZ55PVgZVTqwu2S+rEDH3Zux5K2bagJ9y9DMSFQhJOLpuAEkT9OLpyMannNRgK5TEAlDqt+F+w9u2S+G1ZTPdDSCLu5UcQPTwBR8SPmJmkfztRZCIvw4U6aaeQPZ+Z+Me+e6xtSBsn1O4DXTwIkkE0EKIOMzGg+/lQAq9dYGD8O+PWNIeTFUW1x+ec2XnnNSyi79pow5s9LvvgwMhSSc5Y2cXpVrGlusXDu2Q6OPTp1wsL3P9h4WmQcLROjUoi2//pjGGPKsnsM9FqjpXGSM2o8ykgSoAwykrR5LhIgARJIPQHKIKlnzDOQQDYRoAziczQpg/gEyN1JgARykkA2yCBNThdeaN2AZ5pX46uuurjGsUQEkRKRQ3RSUaRbSkn82C0Psvs0TfvQ1I8TJf3juMKJmC9JIGwkkCsErMY6T/AQ0aNH9lDpo6EWVt2OuCQPt7AYKCuHM6bSlGJxyyrgjhkLt1iXy4HySjjjpsCtmpAreFNynZRBUoKVByUBEiCBUSFAGST12Jcus/HG27YRQG6TciZVCaRYvLXYxkdL5RgiJdzwixAmT059v9P1DJqU8p1IGrNmurj+F8kvD7P3db/4SsAkgmiLloxJVzbsFwkoAcogvA9IgARIILsIUAbJrvHk1ZBAqglQBvFJmDKIT4DcnQRIICcJZLIM8mH7djzTshbPt67vGbtCK4DDCqpN+ZW9W4uUd2lxutEmk85b3dCgY368SB/HF3oCyMIC+YogGwnkAAGroQ6Brz5CYOWnsHduhVVbE9NVa6kWp3I8XJ2qJsEtFclD5Q4VPaLSx1j+HMUEMwkbUQZJAkQeggRIgATShABlkNQOxNZtFu59QGqZSLvskjAOPTjxRIl/PRfANystFIv7evMNYVSOTfxYqb3q+I/eLVUy2zssdLS73lymNl1ut9DVCUSzP1pagM+/sFEgUsztt4ZRXp56Bt2SknHnfQHU1Vn4zS0hTBgf//VxDxIYSQKUQUaSNs9FAiRAAqknQBkk9Yx5BhLIJgKUQXyOJmUQnwC5OwmQQE4SyDQZZGuoBU+1rMGzzWuxPdzaM2YniLhxRelcnFc8w5SHibWpINIaVjHEE0S65aPMBflVUKmEjQRygYC9YwsCX39sJBB746p9LtktKI5IHiJ6VIyDI6kdrogdbtVEeV0Nt3piLmDKqGukDJJRw8XOkgAJkMCQBCiDpO4Gae8A7rongIZGC4cf5uKSn/hPsXjo0QA2bLRQWeXi5uvDRgxJ59Ym1TAbpJJfY5MtHKS6XzNQL6+bmy0RPTwBRAWPeJtfsSbe89XsAN55z5YyPakrSRNvn7g9CQxGgDII7w0SIAESyC4ClEGyazx5NSSQagKUQXwSpgziEyB3JwESyEkCmSCDtDshvNK2Ec9KCsiyjh2Ifr/sgPyxuKx0Di4rno3xwTT/pDUn7y5edLoSUOkjKAKI/fVS2DWb+nUzvOBIhA86GuG5BxkJBMVl6XoZ7NcgBCiD8NYgARIggewhQBkkdWP5+FM2Vq+xUS3ixq1SHkZLvPhtHZKScf9DQezaBUyd7OKX14WRL+VnRqvVSlpGU5MIHyJ6NDVZRnxplGV93SivQ5L4EWsrKpI/C4tcFBQAulxY6KKo0FuOrisqcFFcCsyWEjEj3brkWkaT9UhfL8+XuQQog2Tu2LHnJEACJDAQAcogvC9IgATiIUAZJB5aA2xLGcQnQO5OAiSQkwSSIYPsCrWh0e1Co9OFhnCntxzuQpPTiYAlMcEIoFDSOgpludDSeRAFkeUCW96T9wskicNsA2+bIlle3rETz7auxYutG6S0i1fSZUKgCJeUzMGlpbNMggcbCZBADAScMOw13yKo6R8qgNTv7tnJLa/05I+Dj4Gz/0K4BfKpPltGE6AMktHDx86TAAmQQD8ClEFSc0Ms/cTGG2/Z5uC33xrC+CRWs2uUVI377rfRJPP58xzfaRWa3qHlWDTJRNM6OnQuiR19l6PlW9w+DsbOXd42QzWVJ7SUS0WFzMe4GCNV/nReIfMiET8KCy0z17IvbCRAAskhQBkkORx5FBIgARJIFwKUQdJlJNgPEsgMApRBfI4TZRCfALk7CZBA2hFQyWKrlELZ0t0i8xZ0uP6ji/e+yKBtIS9oo71r8GM3q+QhU6OIHk0iejSI6NEooke9TKno09591JIt5xfPlBSQ2Ti5aErajRM7RAJpQ0CKtlttLTJJxrcuN+1BcMUHCHz7KaDrIs2ZPi8igBwNZ+b+adN9diQ5BCiDJIcjj0ICJEAC6UCAMkjyR0FLitxzfxCOVBS56IIwFi1MforF7loL994fQGcXzPHPPD0sEkcfgSNSgqW/3OEa6cNs1+GiQ5clacRPGxMRO8rHRKQPlT1E/vAmET7oAPvBy31JICEClEESwsadSIAESCBtCVAGSduhYcdIIC0JUAbxOSyUQXwC5O4kQAIjTmBv2WNLd7ORPzaL/LEtRfJHKi6yMlCIcjsfY+0Ck/ARa3Ok4IuWgOkUyUWlkk43JHNHJp2HcULhJFxROhfnFc9AsSSFsJFArhGwtq6DvWcXrFYROVTyaG82yyp8uO0qfcikr3W5cc+QeEIHi/ihCSCHHAu3ojrXUObU9VIGyanh5sWSAAlkOQHKIMkdYJUz7rw7gPoGC4cc5OLyS5Mv20d7vHGThQcfif3fRoNd6T7lWbRci5RjKZIqmYUicxTossyL9bUsFxZZpoRLsWzHRgIkkH4EKIOk35iwRyRAAiTghwBlED/0uC8J5B4ByiA+x5wyiE+A3J0ESCDpBHaH27ElJKkeMum8Z4pR9lDBYmqwFNMiU5m8TnaLJRmkVMq2lIvoUR6QSfqgU4V5nY9SaxSLYCcbBo9HAmlAwF79DYJff4yATFbdzrh75JaWw9Vi7TI5U+eY8i9hKf+CfCnwzpYTBCiD5MQw8yJJgARyhABlkOQO9JPP2PhxlY2qShe33RxGXvL/edWvwytXWnjuRSmHKWKGJ2rIn2hmWSYpv6ISh07esidx6FQkQgfLsyR37Hk0EkgXApRB0mUk2A8SIAESSA4ByiDJ4cijkECuEKAM4nOkKYP4BMjdSYAE4iZQa2SPVpE9mntEj63yekvk9XAlVFSo8GSPksi8zIgfU+W1zlMhf+x9kQV5NkoKg9jTLF+TYyMBEhgVAva3nyD4lQogSyXpo6mnD25hMZw5C+AWeXKHWyIZ30UlRvZwS8pkLpO+J8vmfdmejQQog/AeIAESIIHsIZCLMkhrK0yplM5OV8qsaMkUWdayKZ26DghKYGC+SBz5+S4K8i0UiDyRL356gQgW0fUDlT/5dLmNV9+wzf433xDCxAnZc5/wSkiABDKHAGWQzBkr9pQESIAEYiFAGSQWStyGBEggSoAyiM97gTKIT4DcnQSynICWI/m4owaL27fi7bbN2CEih7YiKT8SdC0ELPlgUKY86LJllgOuvNa5vjbrbVMGRRM/NO1jONljjCRoROWO6cEyTBHBY4aZl2D6CMkeww0rZZDhCPF9Ekg+Aau9FYFvP4WtCSDffQar0/t9pM2ZON1L85CSLs7cBYDtP148+VfAI6YzAcog6Tw67BsJkAAJxEcgk2SQ7m4YWaNT5I128cx12UgdKnLIvEvWtXfIOpU6+sgdHbJOpQ+dh0Lx8Rlq66AKIiKNFIg0kl9gYccOb+sLzw/jyEVu8k7EI5EACZBAHAQog8QBi5uSAAmQQAYQoAySAYPELpJAGhGgDOJzMCiD+ATI3UkgCwnsDLXhzfYtRgB5p21L0q9QZY9oskdU9lDJw0v2KIO+n+6NMki6jxD7N5IErIZaWA11sJr2ROayrK8b6wDX7ZPQIUkcksgRT0KH1VRvSr9o+ocKIH1b+IBFCC84CuFDjoU7btJIXjLPlYUEKINk4aDykkiABHKWQLrIIA0NFur2ALW1FvY0ALt2ifAhLqsKH5rc0daWvCEqipRUKdCyKVJaJZYWUhFFBRSZuk2ayMB7LTjQwVWXO7EcktuQAAmQQEoIUAZJCVYelARIgARGjQBlkFFDzxOTQEYSoAzic9gog/gEyN1JIEsIrOjcjXdM+scWfNcln1j2afvlVeDM4mk4rnCiJH4k/m37cjsvY2SP4YaVMshwhPh+NhDokTxE6lCxo0f2iL5uFPlDZI1kNre03MgipqxLIIDA+h96Dq/lXsKHaPrHMXAOXMTyLskEz2OBMghvAhIgARLIHgIjKYN0iNixe7dIH+LA1u6xRPwA6utt1EQSNWKhakQOKdtSKEkcKnJoCZcCXZa5lm7RUi6a1FEoy8VS3S5P0jt0Wdfr9lrmJZlNJRVNHdGSMyqJjJ+gpWWSeQYeiwRIgATiI0AZJD5e3JoESIAE0p0AZZB0HyH2jwTSiwBlEJ/jQRnEJ0DuTgIZSqBNyr+837Edi0X+UAlES7hEW4GUdTm2cBLOKJqKs4unY7IkdrD1J0AZhHdEJhOIpnYYwcNMmughTy4k2cOOJHrEI3m4ZRVwy6u8qUKmMZVSpsUeGFFHK6y2FlitzbDaWwBZRmTZ6tz366jOtDle6ReZwrMPzGTs7HuaE6AM0jtAyz61UbtbSgJcwG+Bp/lty+6RAAkMQiBRGaRLkjK6tGSLCBBdXa5MFpy9fhVqosePqyTpQ3xYlUA06WOwpuJGdbWLKvnTqKrSxfhxQEmpSh+exKHzPEoWvI9JgARIYFgClEGGRcQNSIAESCCjCFAGyajhYmdJYNQJUAbxOQSUQXwC5O4kMEIEvuuqw2eS3rGsYwdWdOzG9nAriu0gCq0gCmCj0CwHUIgACmyZ63qROry5vpb1Zh7EN121eL99e7+eVwYKcY6IH6eLAHJy4WQUyfHYBidAGYR3RzoRUHHDam0EmptkLlOL5JC36HIjbJmb5eYGkT6knIuIH7E2lTwgYoejgoeRPSr7SR/mvcrxsR4upu3MtUQlETlnso8fUye4UU4SoAziDftnX9h4+VVP5jpgPwfXXEUhJCd/IHjRJJAhBLpV3jBlTnpTLLTkia4rDOZjV313RO7w1qncoWkXRvYw0oc36fqOQUqkDIciKP9sUtmjusoR8cOTPirl9fjxnuzBRgIkQAIk4J8AZRD/DHkEEiABEkgnApRB0mk02BcSSH8ClEF8jhFlEJ8AuTsJpIBAu6R2fNG1G5937MSnnbvwRccutLqhpJ9pQX6lKf9yRtE0HF4gn1yyxUyAMkjMqLhhPARcqe/e1gy7udFIHVCxQyUOXVahoyWyXucR2UMTNuJtvUkefeSOqOgh4oeRPETEgJRpYSOBXCFAGQT46hsLz73Q/+d++jQX114TNuUI2EiABEggGQRMCZJOkTIiyRudfZI4vPVeOoemdOhrTejw5vraW98lr9sTlDeGuwYt2aIlWfKlTEt+npZr6X0dLdVSKsGJ48aJ9DEWqKiQv9/YSIAESIAEUkqAMkhK8fLgJEACJDDiBCiDjDhynpAEMpoAZRCfw0cZxCdA7k4CSSBQKyValon48YWIH5/J/CtJAdm7zcsrx8KC8Ti0oArz8uTb+sO0TpFHOl0HHSKWdCKMDjeMTieMdlk/VlJAVAKZFJDcYraECFAGSQhb7u0kCReWSeuQ1A4RODSlwwgdInxAJY/ocpMnfOjrhFpxGZzSMXBlQkm5zGUaI08nikvhlsh6LeNSKpMmfCQ5ySOh/nInEkhDArkug6z83saz//ISQS7+SRjz5rh49Ikgdu6SB55S4uAX1zooH8MHnml467JLJJByAkbe2Ct5w0vW8BI2VNAIibeuyRp7r9fEDSNzyHyocip+LqJIZLV8KblSkC/yhkgcKm/ovKIsKP8KCsl6fS1CR2R9vmynUkf0dYFIH/paS7qwkQAJkAAJpCcByiDpOS7sFQmQAAkkSoAySKLkuB8J5CYByiA+x50yiE+A3J0EEiCwqrseyyXt43OZlnfuxOZQS7+jjLULsLBwPI4oGIfD8quxSOYldl4CZ+IuqSJAGSRVZNP8uPKVVLtuO6wGEbaiMocpwyKihwgfVotIHlKixYgdcZRj6XvVboE8iSgbA6dMZY4yQAQPI3qI5KHLRurQ8i0lKnpEpI80x8bukUAmEBhOBmlqtjCmLDtliFWrbTzxtCeCnHeOg2OO8krDdMgD3sefDGDzFgtlpSqEhDEhuZWhMuHWYB9JIGMI6M+sJ18A3Zq60e0te3NX1sk8UlbFW6/b6TrZVubdRujoTeJIlbyhSUNG2ugRNFTU6JU5VNzIN2kc3vp8+WeQl87RK33o+qHkDcsCJo4tQs2e9owZP3aUBEiABEhgcAKUQXh3kAAJkEB2EaAMkl3jyashgVQToAzikzBlEJ8AuTsJDEOgS9I5vumqFfljp5k+69yNBkc+qY20PMvGgryxRv5YKNLH4fnjMDNPHgCzpTUByiBpPTy+Omc11IrwsROo3Q57dw3s2hqgbgfsXSKBNO2J69iuPMnQlA5oUocmdJhlT+xwy2S5WESPMbJspA8vuYONBEhgdAgMJoPoN+L//WIAa9ZYOO0UB6ec5IkS2dLWrbfwyONeaZgzTnNw0gn7Xt9Tz9j4YZVtHsj+TErGzJqZnVJMtowpryO9CXSrgGGEjIiEERE2ulXOiE6RdZq24ZVFiUgdKnT0LEfKpaQwcSNKsp+80SNqaLKGl8RhUjf6rO9N4YhIH5HkDV2fN0J+O2WQ9P45YO9IgARIIF4ClEHiJcbtSYAEnsaNFAAAIABJREFUSCC9CVAGSe/xYe9IIN0IUAbxOSKUQXwC5O4ksBeBZqcLn5qSL7vxqaR+6HLfpqkfR0q5lyNF/jiyYIKZs2UeAcogiY+ZvWcXrJ1bYG/bAGvHZiNcAAk+XHUtuObJQj7cYOQpRDAPbp5+fbRQ1gVhyXqVMnQb9CzLkwjHhbVbBI89Inrs3AZLhA+rrgaWPokZorlVE+BWTZLkDpE5oiVYZO4te9KHyh8Oy7EkfpNwTxIYBQIDySBr11l4TkSQlj4BXpVjXVx4voM5szNfiNi4ycKjkvwRkgfTJx7v4MzTB/9d/NIrNj5f4aWHXHlZGActyPzrH4XbjKfMIAKdKmb0iBiehGFKoXR6yRkqaHSb9/tLHN3RlA1Zb0qmyGuznZZTGfpPDN909E8dlTLy8iIpG5KekRcUIUNe5+V5pVCC+ieS/BkUFTPMush7JpHDyB3etvrnk0pgmdgog2TiqLHPJEACJDA4AcogvDtIgARIILsIUAbJrvHk1ZBAqglQBvFJmDKIT4DcPS0JdLhhuK4rj5f7TjDr5B15BiyTRAf320aeafTbPrK/27O95e2n//XZtsLOx+quRizr3GEEkO+7+icHzMsrx+GS+HGUCCCLRPyYnyflHdgyngBlkOGH0EgfKntEpA9rxyZZ3girM73jut3CYrjjp8CtnghHpA93nEzVIn/o8vjJw184tyABEshIAn1lkFAYePNtG58u9+SHgZrKEOeeFUZZhoZ5bd8OPPBI0CQULFro4qIL5KKHae++b2OJTNouOM/BUUckKPINdyK+TwIxEnDkFjTShpY4USmjs09pFC2V0pPAERE2TFmUPqkc0ZIqkTIq0QQO3S9VLSBBPCpY5KlsEZEyPAnD81a9dZH3zHaezOFt4yVx9K6T1yp6RPZLVZ8z8biUQTJx1NhnEiABEhicAGUQ3h0kQAIkkF0EKINk13jyakgg1QQog/gkTBnEJ0DuPqoE1nQ34PW2zXirdTO+lFIs6dC01MtRkvhxhIgfx4gAMjYgRbHZso5AvDKI1dIIndDSJKVG6s2y1dIAq7lB1ulc1jdH1sv7Ju2ioBgoLILKCVBBIV+Xi8wyCmS5SOb5kn6h78lrs41MVsgUipep00u5kGUr8tp8pbW7o2e92ca8p9t0S6KGPHXQZI1IkoarTxdksiRpI7psUjc0iUP7qF8v1W2k2TWbjPwxnPThFpXAmTIL7sTpcCbOkPk077yJNBGzLP3arl6DXLdZlq+4W95XcM21uaHeZchylImezqR8iOhhkj7Gifwhy5rwwUYCJJB7BKIyyJbtLp5+1sbuWgv60PaMUx0cd6wDfbCoD56XfmLjPREi9GGxfgP/NHn/mKO89zOl7ZDQsgcfDkrCAXDYIS4uuSgcc/9XfGnhxVcCItQCxwuXs8+kEJIp4z6a/TQCxl6lUfpJGZEEjt7toqVR9iqLEimjYkqlyPHCwztMCV92j5hhRAzLpG30JGdIkkaPlNEjcEQTODyxw0y6j5RIicob+jvDHtwxS7iv3HFfApRBeFeQAAmQQHYRoAySXePJqyEBEiAByiC8B0iABOIhQBkkHloDbEsZxCdA7j7iBFZI+sYbIoC8IQLIupA8XB+iFdlB2PKwwoYFWz4R1P90bl7LfgGzRtfttY2UntB1AdnK20/e1/0ix7IixwjIvMzKgxFACifg2MKJI86DJ/RHwOqQlIra7dAUC3vn1kipECkXIqVLbCllEm1GjghIzrYtTwb16aBMtpQgcSwbriWvZdm8J5/wu/Kepdu2NhvZwwgfOdj2kT6mzBT5YzrciuocpMFLJgESSHcCKoO8tSSM19+UUhDygLmyysXVl4cxccK+PW9oUCHCxrr1ngGi21x8YQiTMyA8SCWX+x8KoF3+93fAfg6uvjJ+kWX1GkuEGSkvI5wWHOjg8ksc879GtswmoIJPNGXDc0n7pGxEkjO6TdmTvmVRdDuvFIqmc+h75nV0X/U1xUPVY6eiqVgRTdJQr1TFi54UDZOY4UkbPQkc0aQNs673PZPSodtGhA89ViYJXqlgm+nHpAyS6SPI/pMACZBAfwKUQXhHkAAJkEB2EaAMkl3jyashgVQToAzikzBlEJ8AuXvKCYRcB0s7dogAsglvigSyI9xbYqLECuLU4ik4u3g6ziiahjFSsoWNBPYmYNWK3FG3A3ZtjSd77N4u852wda5pHSPQVIxAWTmcsrEmecItq4A7ZizcknJZLpf35PUwT9JUXDHySmebN+/qANplWV7DvCfLkoxhjhNN7uiT6GHSPVRSSbTpV+IHSRXRr8ubUiqTJO1jymy4E6ZS+kiUM/cjARIYcQItLcCLLwWxaq136qOOlMSLMxxJAhi6KytXWnjtrQB0f21HLHRwpuxXlKahYLV1ngjSJv/bmD/PxTVXhRFIMKVgyxYLjzwR0BAmzJzh4ufXhKNBUSM+frl2Qk2l6S1/0itseEkb0XIoKmREt4umbOh7eyVtRNI6TMBWClM2JHSsT/mTvqVNIhKGOLd9y530pGpoQNlepVR6SqxoQBklpFy7/WO+XsogMaPihiRAAiSQEQQog2TEMLGTJEACJBAzAcogMaPihiRAAkKAMojP24AyiE+A3D0lBNqcEN5r32YEkHfat6LRkU+oI61Kyq6cVTwN5xRNx4lFk1GgqQxsKScQ+OELBD5fosXY4UyVEh+TJOVhssyr0zMNxV79DYKfvYPAZ++JLNErEA0Eyh0nEkP1ZK9EiC5LyRC3tGxIpvny9KwwP4Cm9iGKyheVetIHkzBSfn/yBCRAAiSQKIE1ay3863kvKaNYKm5ddkkY8+bGHmPQIV7eW4ttfL7CsyqKpYLXOWeGcdihsR8j0b7Hs19jo4V7H7DR3GIZeeMX14Z9P0jftQt4+PGgkWEmyp8D1/0shBJxH9m8JAyToBEpf9JPwoikbHTJ3FQ165e0Iev6pGx4aRsicJiKZ17yRqpSNvTheTRlQ2UMk6oRLY0STdnoKZXilUGJlj/ZJ2UjmrphJA+mbPBnYuQJUAYZeeY8IwmQAAmkkgBlkFTS5bFJgARIYOQJUAYZeeY8IwlkMgHKID5HjzKIT4DcvR+Bp5pX44XWDcgXQaNQymcUSHJHoZTOKJCCKyptaNmWfCm9UiTrC2R9oawz78l63X6XpH683roJb4sA0rdND5aa9I/zimeYcixsI0MgsO47BL5YItP7sJrqBzypW1DoJUFM1hIgM0QUmS3THEm/GFqmSMUVWLu2IfjpYgSXL4amgfS04jI4RvgQ2UOlj6oJcMZPgVs1MWGZpSDPRklhEHuae0WlVFwTj0kCo0mgTR6Ov/a6PCSXh92X/CSM0tLR7A3PTQLJJaDJCq+/2Stx7DcXuPJySQPJlxSkBNqWrRZeeMmGlmHRNm2aKz83Dqql3Mxot+ZmmESQeilvM3WKi+t/nrwUj8YmCw89YmNPvYWKchfX/dxBVeXoX3OszDUNwyuJ0r/8iZe8ERU1BkjZMBKHVxrFbBsVPCLHCQ3hisbat8G20zQMI2HsVf4kKOsKdL1J0tDEjT6pGj0ShyX7RsqmmHVeqRRN3xguCcdvv7k/CYwkAcogI0mb5yIBEiCB1BOgDJJ6xjwDCZAACYwkAcogI0mb5yKBzCdAGcTnGFIG8QmQuxsCTzSvwt8av8HWUGvSiCzIr8S5IoCcKeVfDiqoStpxeaChCdib15gEEJVA7D3yld9IcyrHI7zwRFhtrbC3b4RVs9krTzJI0xIomhxiUkRUEhFhRF+bJxPJbO0tIoBoAohM63/oObJbWIzQUachfOTpcOYelMwzmmNRBkk6Uh4wzQj8sMrGS6/YaI38Wi+UshfnnSNpB4dkzkPeNEPK7qQRgRrxBZ/9VwB1ezxx47xzHJx7WhDtXSF0dCUmg0Qvb8kHNt5d0lt75YTjHJx6kkomowNAUzseeNi71kmS3nH9L0LQn+dkNi0789iTAWzbbqFI0lV+/rMwpk5O7u8KL2GjV7ow8kZIkzcsdEZKn/SUSekROVTi8MqiqLDRKdvqa698ioUOOWYqm5eaEZU2RMLoETJUxohIGJHkDG+7aKmU/okc+QUqcHjvpWsJolRy5LFJIBEClEESocZ9SIAESCB9CVAGSd+xYc9IgARIIBEClEESocZ9SCB3CVAG8Tn2lEF8Aszx3R9VCaTha9SEPSlA5Y2fls6HK/9JMRF0uCF0OmGZh+W1zKX8S6froF3XyzqzPjLpsj6SOalwMs4rmYGpkgbCNjIE7B1bRAB5z0gg9s4tPSdVoSO88CQRKkSqmH3gPp2x6nfDrtkEa/sm2DtkLsvmdfsgUpB8KmtKsmiJGSOHzPQSRSZMBSQpJuYWCiGw8lORQN42c8hr04JBhBcchdDRZyJ88NHyWp6spKhRBkkRWB521AnoQ91X3ghg5UrvIbmmgdiWi6Zm77WWz7joQgdjypL7oHfUL5wdyBkCHy21TVkXbRMkbOzKy8IYV+1ibGl+UmQQPW5tnYWXX7WxYaP3czN+PHDgAY6IhLrsorISI5Keoek+Dz4ShJZz0Wu84ZdhU8YmFU0Fi6f/GcDadd41D9cKRYLQ/03nBV3937cse7KE/NloUja6VdowaRsqbgx3NH/vqxyjooUmY6h4URBJyjDrIskZvbKGpnJ4qRtG6CiQZem/t66PxDFK8o8/EtybBLKHAGWQ7BlLXgkJkAAJKAHKILwPSIAESCC7CFAGya7x5NWQQKoJUAbxSZgyiE+AObi7yhtPSjmYOxq/NRKIfuSvEsh/j12I+XkVOUhk5C7ZiBZ1O2Ht3i5fb5UnPFL+BMWlcKUki1skc1k2r0vLh+2UJakfwc/e9RJAtqzr2V4TNYwAcsQpCB+waNjjDLSB1VDbkx5i10iKyI7NsLdtgNUxeJKIlpZxRRIJT5kBd8ocTxSRNJK+zZStkT4Hl78LSCJItIVnH2ASQEIirYxUeRrKIAndGtwpzQmoAKIiiAoh2o5c5ODMMxzY8tx88Ts2PlnuPUDXh7hnnxnGooUUQtJ8SNm9CAFNxWhsBN6X1I4NmzxZ4dhjJQ3kzN4UkGTKIFHwX31t4fW3pNSS/C97oKaCRuVY10gpOq+u9iSRkhL/Q9ch5Z0eeiyImhrvmL+6LoyyEajg9urrtkkI6Q5Z4mq6xtcM6bImc/iorKbiSN+UjWhpExU2jIRhEjZkWeZ5ImdEUzaipVIKdH1P+oYnbxRLigkbCZBAdhKgDJKd48qrIgESyF0ClEFyd+x55SRAAtlJgDJIdo4rr4oEUkWAMohPspRBfALMod01ueNxSQK5UySQneF2I4GcXzIT/1lxGCWQJN0HVmMd7FrJrq/dbubW7hrYdTVmru/F01Tq6BFFVBpRWUSlkcIi2BtXQcWKnibZ46FDj/MSQA45Np7TxLWt1SDXVyNySDRJJCqJDJIk4hYUSZmZ2ZImMgX2+u9g79rWcz5NGNEEkNBRZ5i0kZFulEFGmjjPl0oCWgrm5ddsfP+DJ3vog+NLfuJg+vT+ssfmzRaee9HGnnrvYfrcOZIScoGD8nJKIakcHx47PgJaTmTLNgtbZdqy1cLmLVIORMSIaNNkjCsuDWPO7P73bSpkED2nylXr11umTIsmhtTtAepk3t6nT3tfoQoMmiBSJQkiFfLzpckYUanCLIdVsvAEi8F++hqbgHr5WdUUnxuvd1BRkT4/p1rOpVskke6wXIMsR69Hr82WXy8mZSNSRkXljgKmbMT3Q8CtSYAEQBmENwEJkAAJZBcByiDZNZ68GhIgARKgDMJ7gARIIB4ClEHioTXAtpRBfALMgd1VAnm06Ufc1bQSu0QC0UeFF5bMMhLInLzhEyhyANGAl2i1yFeQOztMGoYlKR6uPu3YqwVWfuaVVdG0j7rtsDQLfYjmVk+EO3YczKebe7cOEXTaWsyEtuaYsIeklEr4yFPhHHyckURGq5kkERFDrG0bzdzeKdPWDf3SP0zfRGjpPvIUOCKAhOcsGK3umvNSBhlV/Dx5Egl8I2kgr74myQWRB9Mnn+jg9FN70xL2PpU+rF28xMayZZ44ot+0P1vSFY46YvB9kthdHooE9iFQIw6lih9bt9nYuhXYXbvv/yNVrpg8ycXUKS5OOM4ZsFRKqmSQwYZMJREjh4jrWSfSRl2tzPfYqBVZRCWPZDQVX268PozqqvQRQZJxXTwGCZAACQxHgDLIcIT4PgmQAAlkFgHKIJk1XuwtCZAACQxHgDLIcIT4PgmQQF8ClEF83g+UQXwCzOLd250QHm75EXc3fofaiARyUclsI4HMyhuTxVc+/KXZm9dIusaPsDf8CEtSPIyEoWVbVMhola/iJtpEdnAk5UKlD0fSMNyqCZJ6MRlOlayLN/1CyqhYrSqHiBgiyRtWa7NZtmS9lpQJHX7iiJVUSRSHpqFYO7ZIiZn1wmRSSlNL4u0jZZB4iXH7dCPQLL8aXnrVxqrVntQxdbKkfPwkjAn9qzMN2m19+P7cC/LgWh5ma5s9y8XFF6ZX+kC6MWd/+hPoiqRdmHIiZtlLu1DhKByW1IhuXS/rZLmrZxvxAotcNDSI/CGpH1ukHMne4kRhoSd+TJroYorc15OkBEuVlGMZro20DDJUfxobRQ6p92SRNknuCUrZEzMFXGi5lGDQklIo3nJeQF/Lsr4vaRretq5ZL8FfbCRAAiSQkwQog+TksPOiSYAEspgAZZAsHlxeGgmQQE4SoAySk8POiyaBhAlQBkkYnbcjZRCfAFO8+xedu9DuhuDIMwxHgsAdVyady3m9ubdO/zPbWL3r9t5eH4NE14V1Dz2Wbt/nmGadvKdlYF5u3YgGR7LWpV1eMgd/qDg0JyUQe88uWJtXS5mSHxDY8D3stStjGnVTpkXSNtyCyFxfS9kTyGtHUzj0tZRtcURyUNHBGT/ZJF+wZQYByiCZMU7s5cAEvvrawmtvBNAhv+L1wbEmgRx/bGLJHm+/Y+PDj5kSkin3mo55WMpzmBIjMg+bciM6l9ciXfQsq5ghr8228p43j0wRWaN3297jmG0jx/H2638cFTdUAklW0+QLFT90mjgRmCLzsWOHFz8GOn86ySDJ4sPjkAAJkECuEqAMkqsjz+smARLIVgKUQbJ1ZHldJEACuUqAMkiujjyvmwQSI0AZJDFuPXtRBvEJMAW7L+/YiRda1+MlkTHqIzJGCk4T0yGvLJ2L35cfipl5ZTFtn/EbdXWaxI+Apn6s+06SP36A1dywz2U5UqrFnbU/nJn7IzxjvogdJVJmJSJ7yNwtkK8ls2U1AcogWT28WXtxTc0WXnrFxuo1XprHnNmSBnKB/zSP7duBf78Q6CnPMXOGi0sucjC2IrGH8tk0AJ1S/cukXqhsEZEvooKF9zoqZvRKE0bMiMgXvWLF3mKGJ3Go1BHdxtvP7Sdj6DbDVCAbVdyFBZpmIQkW/ZItJNVCJKWATPlmvaRdmDQMb32BpF2MlwQbFUDKy5N3j1EGGdVbgScnARIggaQSoAySVJw8GAmQAAmMOgHKIKM+BOwACZAACSSVAGWQpOLkwUgg6wlQBvE5xJRBfAJM0u7fdtYa+eN5kUBqwlJEPtKOLpyAACzYOsknWmYuk6XLkuLRd12/ZbMNerbX9yRZ3Nuv51jyOnpsmQci7+k2+fL6itJ5mBIsSdIVJu8wlpZi2bEJ9vaNXgmRmo3esiR4uPnyhChPnyzJXJbdoCxrRroum/V5sk3k/T7rLSmjouKHvWXtPh11Jc3DnT4f4dkHwJl9IJxZB8Atq0jeBfFIGUmAMkhGDltOd/qLFRZefzNgUhm0jMY5Z4Wx8LDkPUhXuEs+sPHuEi8lRBNHzjzdwbFHJ5Y4korB0msX5w+dXZYIEi46O3XuyRKdPeu9dIzuSCqGChYqb+hrLVnS93V0WdM1tLRJNEFDBZB0bfkiVahkYcqNqHAhpUQC0ZIj0deR94IB+dtgr21VygjIEAdNaRJP0PC28Y6jx42+7j2HV7ok0OeceXKcdGuUQdJtRNgfEiABEkicAGWQxNlxTxIgARJIRwKUQdJxVNgnEiABEkicAGWQxNlxTxLIRQKUQXyOOmUQnwB97L6hu8nIHy+2bsDa7kZzJP2utgogl0lZlp+UzkKplYZPS3xcczy7Wh1tsGoi0sfOrSJ8bPBei/SRyuZMnonw3IPgTpsnqR/7yXxOKk/HY2coAcogsQ+clqVwTHkJ76F6WNwAL73ASzTQqSDflUlEtAJXJu+b/+nWVCIISd/1WsKuBUeuxSxLjS69prAj6yLX4+hr8553jY7IArpNdF/l4O0rc53EyTBsIuvMPj376nLkHBFmruwTj8bR0WFhx06P6MELXJx3ThglKXL9dsqv6OdfDGB7jZc+UlXlokjkE8NErkn7rsy8ucfBUZ5RHnJhmqTRt6k4YKvgKMKBLSJCwBYZUuY6WfpapAXzWkqf6TYqJugxVMpQyaNL5A+9D0ejqXdoxImIJKHyhSZd5KkYodel/RdRQl/rdRiRIpKAYbaNbGOSMvocJy8iX6hgoXyMoBERM/Q4RtToc06VQNiGJkAZhHcICZAACWQPAcog2TOWvBISIAESUAKUQXgfkAAJkEB2EaAMkl3jyashgVQToAzikzBlEJ8A49x9h6R+aAmYF0QA+bazrmfvOcFyXFY6W9I45mLyKKZxWHU7JR1jDextG82TSUue1rmSQGKe4uncDcu63teuvG/pU0x9LGm28Z5q9uxnnlh6r70nnt5r/c/sF3lf11syORVVsFqbPOmjfveAdN0xlXAnToczfjLc8VPgTJwhZVnk6fEwzTJf9e6CJRO65amgfo3bPN2VdfJpYVhKvrg6scTLcChH7P3aOgt79gC7dnsPeseUuSiTikWlpd7yaH6zPCqD7Kjr8lIEpFSDSQYQyUHLNug67We1PAgf6abpB9HyEdqnsPRJ+xctSdHdrX3VddHyFN6PQ085Cn1Ib8SEyD76o6vHkNdR2cEcS2UFPYaKCpHtvdfmR81304fXBSqHyMN0/RHXKS/Pk0ai61UcMaKJyhURAUPFAk/A8KQDb953XfQ9WWeuVbbZa19PxvCOmy1Nf2YuutDBvLkjc09+8JGNxe96KSHp1IqKvPvK3EeFkbIj5j7z7itTtsSIFl7yhZEt+iRoqGBh5BQjX0Tej0gcuq0ndnihVGyZRYAySGaNF3tLAiRAAkMRoAzC+4MESIAEsosAZZDsGk9eDQmQAAlQBuE9QAIkEA8ByiDx0BpgW8ogPgHGsPuecAdeadtkJJDlHTt7vs1dGSjExSWzRAKZg8Pyq2M4UnI3sWp3wN68BgGRP6xNqxGQCW3NyT1JgkdzC4rhThDRY/xUET+mwR2nyzJJaoeJDWDLGgKNzSJ8iBe1W8SP+oj4UVcPWeelCgzVND2iLCKIlKkgMsZFqaQdRNcZaUTWSViAlxCwd2kIUxZCkwOkVISmCERed8nrTikhoWkCKkl4IoVKHp48YTyiOGQHfQhfWQlUSHWhqrEuKmSqlOWxMtc+xtPa2oFGCRJqFm4NDRaa5Ee2vj4ybwCamobnFs/5uG0vAVMeQ/Dqw36TTKHCQCSdwiRTmNde6Q19AKEpDra8NnOVBSLJFqYsh0oDPfv2Jl6ohKAJGHqOnn1VOtBt9RiRY/Y9R09ftA/R80b6Ys4l+46WmKD3ZmOT1wcr0icv0cPrq0n60PWa6BHhoXMVgPo29fYkXMVLE4mkpnhJI56nqGVa9k4YUZaaNBNNnCkWCYSNBIYiQBmE9wcJkAAJZA8ByiDZM5a8EhIgARJQApRBeB+QAAmQQHYRoAySXePJqyGBVBOgDOKTcDbKIE1OF9ZI2ZX1ZmrC+pDOm83rDkm2GM1WKE/DziiehstFADm1cAqCmm8/As2qrfHEj81rYW0eXPxwyyvhTJltJvnKtHmi6Wof5amdpXP9VE3mbjSbX1+bZX0AHVmW125kO7MfvBx/V5/8mWN52+s2PceMHiOYD6d6ItyKkZdjRmAYcvoU+jD3+1Wa9GH1Ez+GSl5QkaNybH9sIfkRbhEBoqExO6QHfUg/VsWQCgeVVUBluUojLoz0IWJHk4gfOm8Q0aNRrlmllViaSTcQeUHLRuhD8bw8LT/hJRzo+jyzLKUk+m0TKUNhRITe1AMVD/ThvUlL0NIW0ZSEntdy7Eipi2hZimSUeenoiAo8nrSjAo6KO52dnqijr1XM0V8rRqIw5UL8SRRG0ugpRTJ6EkUsY8xtSIAEkkuAMkhyefJoJEACJDCaBCiDjCZ9npsESIAEkk+AMkjymfKIJEACJDCaBCiDjCZ9npsEMo8AZRCfY5apMkiXfD3YyB6hJqyLSh9G/GiCJnGkU9NH1se0uLhS0g4uanBQ2h35KjMiJVYiJVT6lVzpU4rFkq87m1It/Uqu9L7u2a9vyRUtxVIikQPtbV7iR3vLPkicaXPhStKGM2UWdDk8bR5QIjU42AYloN9y3yMP5TXBQmWEOnktiFFU5KJI3BktP1Ao80IpPaCvi4tlWcsOFFlmXbK/md4m59a0i+jDcRUr2jvkIbk8LPfWe2Uueh6qR9brN+sTbfpN/JCUGdGkjJ4yI/JAvkPOlUhTaWDceBfVkpxRJSVVqipVAHExefLwR9Pr12SM1laRJiR9oLnFksQMTc2QSdY1yzodJ5UXTKmRfEkJKOhTYkRKjuTra10v46WihJYiye+znZEntCyElJBQ4cDIFSJQVJTZKCkMYk/z8BEhdZJy0iBSh94vDZp6IpOmeuh6lRziaVqeolwkGU0ZGTNGJJJy16SflOtr+fEdjbI08fSf25IACZBAuhKgDJKuI8N+kQAJkED8BCiDxM+Me5AACZBAOhOgDJLOo8O+kQAJkED8BCiDxM+Me5BALhOgDOJz9EdDBql3OtHuhNDqdqNNkjranG60ytTuyjpZ36ZzeU9zatgEAAAgAElEQVSFj72bih6L27dga6h1yCs/uKAKM4JlmJtXjpkyn503Bvvlj0WpJU9Sk9Tsmk2AJm5IuRVrj5Rc2bkNVp0syzpLYxDSpLllFV7ahwgfzpSZcCeJADJdxA+2fQioNFEnyRX18rC+Xh7WR+f68F5FkGQ0lUWKRAxRQUQlhETbxk3J6U+i5x9qv76pFEamMAkUWsJFZQ9PWKiW8BcVP0qkrEsmtoK82GWQoa5PE0A8QUTut8g9pwJLoYhF5VJepkKSQrScjJa+KRf5QwUjNhIgARIggeQToAySfKY8IgmQAAmMFgHKIKNFnuclARIggdQQoAySGq48KgmQAAmMFgHKIKNFnuclgcwkQBkkhnHbvG0X/q//5z78sGYTpkysxv/9f36FwxbMNXsOJoO0GSlDJQ1vroKGrmvVub7W9f228d5rN++J4KH7qtQRjkgesqzlW5LZVPZQyWNefoURPuaI+DErOAZTgv9/e/cCZldV3g38ncxkcueSUi4q1dYqUgUUBeyHWin2A4UCWkECpcj9jpVLAgQbSAAThAApoAhUwqW0alo+BSuCVfFTLoJQQRTUR7StQDEEEi65T9feZzLEJBMm7JCcWet3nifOmXP2Ome/v3ezn+2Z/1mr9dfljvlp2oDFacqC6l81FUL62bEkTZNQ/179TP8GuGxMxzOzo/MnP4whs1PQ46nfRPX76m49w0ZGz2avjZ6xm8XS309THHSn6QaWLa+y4pIry5ZfqdY4WHHJlb5lWVpLsKy05MqyZVqqnRmSpi1YbtmWniFdrX3YMK09sR5u1XIWS1Oep/6X+Jf0pKVhqp+9E6MsWdLT+3xH6/lqu94JT6p2LV2aHq/H9qSxrYlRqsdXfp3e93jluYp47LGOeOLJjnoGjdXdxozuSX+YT0t5pH8bphkZVrXKz6J0mFezc8x/saf+2Xf/xTWfBeLl2lYFS+pZLOpZL1qH2bLZL6rHq9kwWo+1Hq9nx6iWD0kBjVd6W7Z8SLXMSGcKeVQzVdSzZVSzb6y9rNUr3b11Nm5thUHW2Q57IwIECBBYrYAwiAOEAAEC+QgIg+TTS5UQIECgEhAGcRwQIEAgLwFhkLz6qRoCr7aAMMgAhA864dzYeYdt4rAD9ojv3PlAnDfj+rj1xgvSkgidseNDs+K53nDH8kGPAbzsK95kg/RH/pHpr/4j0x/2R6U/8I9MKYDR6a/9IxcvTfeXxKi0jMrIxdXPJTFy0aIYtbC6vyhGLlwcY9JaFJs/Pz+2mj23Dnb09AY8OlKwoycFT9bljBw9YzeNnk1ek8IeW8TSTbZI0xxsXgc/ejbZPHpGp6/zr3CrwhHVai9VoKEONiwLO/QFJlLooQpKrOK5ekwKU9SBiSpEsZrX6Xv9tE0VsqgCFVWYor5f/Uuv81JAo8rDtN632p/eFWtaY6p96Q1ftF6nFcro73WqEMRgv1XLf1TLblQzMVQzWFRLcVRLllS/b5zuV8GHprdqaZMXUjCkCp6kwzo6qwxQyvEM6ehp/awzQR2tx+t/KXRR5XzS/c6UCarCHW7rX0AYZP33wB4QIEBgbQoIg6xNTa9FgACB9SsgDLJ+/b07AQIE1raAMMjaFvV6BAgQWL8CwiDr19+7ExhsAsIgL9Ox2XPmxu4HnBp33nx5dFV/UU63jx4xKSYcNy52ePtbouO+z67yFYbXYYzFKYyxOIUxqkBG+ln9Xt2vQhopfFE9PmbB4hiRtq22q7ftDW+MTj9H1GOrx9NrpW3Hzl+3aYHFncNj6ZCh6V9XLEnLw/Skv7QvqX5P95d0pMfS/Z50f3E1g0b6fXH1WPq97/lqu+hMj1fbd8fzXRvHnGGvjWe6No+nu7dMoY5lM1v0BieWD3HUoYvW5CMl34ammSheCjX0BhtSqKEjHYpVsKEz/U8r5JBm2age6wtAvLRtPVlK2q6r+rns+bR9HZDofZ1lIYrqNVvBit6fy8IUvWOrMa3nloUtUgAjPVfNaLHRRtVSHCV3S+1rIiAMsiZatiVAgED7CwiDtH+P7CEBAgQGKiAMMlAp2xEgQGBwCAiDDI4+2UsCBAgMVEAYZKBStiNAoBIQBnmZ4+CHD/4sJk+fGTd94Zy+LU+Z/NnYafutY9893x+3fnKf3mBHFfRozcSxQQpw9HdbmEIRS6IKR6QQRQpPLE33q7DE4hSaqEIUiyMFKiJtkwIW9f3eQEW9fb1tGtN7vw5kpG2WhTBar1uN6w1r1M9V4YyuWFS9Zv1+rceqkEZrH6r7y96nKxYMGdmW/2VUH0b1zQDRG2CoQxB1AKK13Ej1/EvhiNZzrW1SYKE33PBSWCKFGernW2GGvqDEiuGI5cIVfa/X+17V2JXCEb1hida+tmaqqAIWL+1rK7xRzVaRJpZp3a9DHb2zWPQGOtqyCXaKwFoU6E7/kQzv7oy5L6bpXdwIECBAYNALjBkxNBakAPPCNFOdGwECBAgMboH0f1Fj7JhhMXvegsFdiL0nQIAAgVpgRPr8ZUj6cPX59KVENwIECBAY/AJjR3fHs88vSjPRp29Ut9Ftkw1My95G7bArBPoEhEFe5mD4/r0PxSVXzop/vmJS35YTp14Vb37jlnHwvrvFeUffW4c7lgUyhqS/8C/pTNMk9M6oUc2s0ZN+X9LZ3QokVDMsrPSzo7WcRW9ooP65wjYrjVtp29ZrrPzavTM59Pdcb9ihIw1c/n1f/v1WVUsKOlT7vYo6q3DEssBGHZDom8WiNcNEHYbofWxZMKJ6vDvNjOFGgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIDFxAGORlrO5/6Gdx5rSr45brpvZteeKnZsR7d9q2nhlk4SLffhz44WZLAgQItARa4bCOtBRUe6WX9YcAAQIEXplAV5oKbWn6RspSl8avDNAoAgQItJNA+oJHd5o+0+cd7dQU+0KAAIFXLlDNpFzdqiW73QgQIEBg8AsMHTokFlUzs7bZab077ZcbAQLtJyAM8jI9mfPsvPjAfifH975yaQwf1pqmYo+DTosp4w+N7bd5c/xm9ovt11V7RIAAgTYXGJYuDEcN74qn5y1s8z21ewQIECAwEIGN0xSlL6alEucvlAYZiJdtCBAg0M4C1Yyfm288Ih5/2ucd7dwn+0aAAIGBCowe0VUvEzP3BUv1DtTMdgQIEGhngc02Hh6/fXZBLFnaXmmQ1/zeiHZms28EihUQBhlA6w87+fx457ZbxREH7hm3fvueuOSqWfFvN0yLrrSeiTDIAABtQoAAgRUEhEEcEgQIEMhLQBgkr36qhgCBsgWEQcruv+oJEMhPQBgkv56qiACBsgWEQcruv+oJrKmAMMgAxB5/cnZMOPeK+PEjj8WWr9k0zj3t8HjrVm+oRwqDDADQJgQIEFhBQBjEIUGAAIG8BIRB8uqnaggQKFtAGKTs/queAIH8BIRB8uupiggQKFtAGKTs/quewJoKCIOsqdgK2wuDNAQ0nACBIgWEQYpsu6IJEMhYQBgk4+YqjQCB4gSEQYpruYIJEMhcQBgk8wYrjwCB4gSEQYpruYIJNBIQBmnEZ2aQhnyGEyBQqIAwSKGNVzYBAtkKCINk21qFESBQoIAwSIFNVzIBAlkLCINk3V7FESBQoIAwSIFNVzKBBgLCIA3wqqFmBmkIaDgBAkUKCIMU2XZFEyCQsYAwSMbNVRoBAsUJCIMU13IFEyCQuYAwSOYNVh4BAsUJCIMU13IFE2gkIAzSiE8YpCGf4QQIFCogDFJo45VNgEC2AsIg2bZWYQQIFCggDFJg05VMgEDWAsIgWbdXcQQIFCggDFJg05VMoIGAMEgDvGqomUEaAhpOgECRAsIgRbZd0QQIZCwgDJJxc5VGgEBxAsIgxbVcwQQIZC4gDJJ5g5VHgEBxAsIgxbVcwQQaCQiDNOITBmnIZzgBAoUKCIMU2nhlEyCQrYAwSLatVRgBAgUKCIMU2HQlEyCQtYAwSNbtVRwBAgUKCIMU2HQlE2ggIAzSAK8aamaQhoCGEyBQpIAwSJFtVzQBAhkLCINk3FylESBQnIAwSHEtVzABApkLCINk3mDlESBQnIAwSHEtVzCBRgLCII34hEEa8hlOgEChAsIghTZe2QQIZCsgDJJtaxVGgECBAsIgBTZdyQQIZC0gDJJ1exVHgECBAsIgBTZdyQQaCAiDNMCrhpoZpCGg4QQIFCkgDFJk2xVNgEDGAsIgGTdXaQQIFCcgDFJcyxVMgEDmAsIgmTdYeQQIFCcgDFJcyxVMoJGAMEgjPmGQhnyGEyBQqIAwSKGNVzYBAtkKCINk21qFESBQoIAwSIFNVzIBAlkLCINk3V7FESBQoIAwSIFNVzKBBgLCIA3wqqFmBmkIaDgBAkUKdA8dEmOGd8XseQuLrF/RBAgQyE1AGCS3jqqHAIGSBYRBSu6+2gkQyFFAGCTHrqqJAIGSBYRBSu6+2gmsuYAwyJqb/c4IYZCGgIYTIFCkgDBIkW1XNAECGQsIg2TcXKURIFCcgDBIcS1XMAECmQsIg2TeYOURIFCcgDBIcS1XMIFGAsIgjfjMDNKQz3ACBAoVEAYptPHKJkAgWwFhkGxbqzACBAoUEAYpsOlKJkAgawFhkKzbqzgCBAoUEAYpsOlKJtBAQBikAV411MwgDQENJ0CgSAFhkCLbrmgCBDIWEAbJuLlKI0CgOAFhkOJarmACBDIXEAbJvMHKI0CgOAFhkOJarmACjQSEQRrxCYM05DOcAIFCBYRBCm28sgkQyFZAGCTb1iqMAIECBYRBCmy6kgkQyFpAGCTr9iqOAIECBYRBCmy6kgk0EBAGaYBXDTUzSENAwwkQKFJAGKTItiuaAIGMBYRBMm6u0ggQKE5AGKS4liuYAIHMBYRBMm+w8ggQKE5AGKS4liuYQCMBYZBGfMIgDfkMJ0CgUAFhkEIbr2wCBLIVEAbJtrUKI0CgQAFhkAKbrmQCBLIWEAbJur2KI0CgQAFhkAKbrmQCDQSEQRrgVUPNDNIQ0HACBIoUEAYpsu2KJkAgYwFhkIybqzQCBIoTEAYpruUKJkAgcwFhkMwbrDwCBIoTEAYpruUKJtBIQBikEZ8wSEM+wwkQKFRAGKTQxiubAIFsBYRBsm2twggQKFBAGKTApiuZAIGsBYRBsm6v4ggQKFBAGKTApiuZQAMBYZAGeNVQM4M0BDScAIEiBYRBimy7ogkQyFhAGCTj5iqNAIHiBIRBimu5ggkQyFxAGCTzBiuPAIHiBIRBimu5ggk0EhAGacQnDNKQz3ACBAoVEAYptPHKJkAgWwFhkGxbqzACBAoUEAYpsOlKJkAgawFhkKzbqzgCBAoUEAYpsOlKJtBAQBikAV411MwgDQENJ0CgSAFhkCLbrmgCBDIWEAbJuLlKI0CgOAFhkOJarmACBDIXEAbJvMHKI0CgOAFhkOJarmACjQSEQRrxCYM05DOcAIFCBYRBCm28sgkQyFZAGCTb1iqMAIECBYRBCmy6kgkQyFpAGCTr9iqOAIECBYRBCmy6kgk0EBAGaYBXDTUzSENAwwkQKFJAGKTItiuaAIGMBYRBMm6u0ggQKE5AGKS4liuYAIHMBYRBMm+w8ggQKE5AGKS4liuYQCMBYZBGfMIgDfkMJ0CgUAFhkEIbr2wCBLIVEAbJtrUKI0CgQAFhkAKbrmQCBLIWEAbJur2KI0CgQAFhkAKbrmQCDQSEQRrgVUPNDNIQ0HACBIoUEAYpsu2KJkAgYwFhkIybqzQCBIoTEAYpruUKJkAgcwFhkMwbrDwCBIoTEAYpruUKJtBIQBikEZ8wSEM+wwkQKFRAGKTQxiubAIFsBYRBsm2twggQKFBAGKTApiuZAIGsBYRBsm6v4ggQKFBAGKTApiuZQAMBYZAGeNVQM4M0BDScAIEiBYRBimy7ogkQyFhAGCTj5iqNAIHiBIRBimu5ggkQyFxAGCTzBiuPAIHiBIRBimu5ggk0EhAGacQnDNKQz3ACBAoVEAYptPHKJkAgWwFhkGxbqzACBAoUEAYpsOlKJkAgawFhkKzbqzgCBAoUEAYpsOlKJtBAQBikAV411MwgDQENJ0CgSAFhkCLbrmgCBDIWEAbJuLlKI0CgOAFhkOJarmACBDIXEAbJvMHKI0CgOAFhkOJarmACjQSEQRrxCYM05DOcAIFCBYRBCm28sgkQyFZAGCTb1iqMAIECBYRBCmy6kgkQyFpAGCTr9iqOAIECBYRBCmy6kgk0EBAGaYBXDTUzSENAwwkQKFJAGKTItiuaAIGMBYRBMm6u0ggQKE5AGKS4liuYAIHMBYRBMm+w8ggQKE5AGKS4liuYQCMBYZBGfMIgDfkMJ0CgUAFhkEIbr2wCBLIVEAbJtrUKI0CgQAFhkAKbrmQCBLIWEAbJur2KI0CgQAFhkAKbrmQCDQSEQRrgVUPNDNIQ0HACBIoUEAYpsu2KJkAgYwFhkIybqzQCBIoTEAYpruUKJkAgcwFhkMwbrDwCBIoTEAYpruUKJtBIQBikEZ8wSEM+wwkQKFRAGKTQxiubAIFsBYRBsm2twggQKFBAGKTApiuZAIGsBYRBsm6v4ggQKFBAGKTApiuZQAMBYZAGeNVQM4M0BDScAIEiBYRBimy7ogkQyFhAGCTj5iqNAIHiBIRBimu5ggkQyFxAGCTzBiuPAIHiBIRBimu5ggk0EhAGacRnMAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECgvQSEQdqrH/aGAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQINBIQBikEZ/BBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIH2EhAGaa9+2BsCBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAQCMBYZBGfAYTIECAQH8CN99+Z5x94TVxzoTDY7f379C32Xfv/lGcN+P6eGr2M7HdW/84pk08KjYZu2HMX7AwJn3mC/Gt798fI4YPi+MP/XDsu+f7ARMgQIBAGwh89tr/F/9007/HokWL4//s8LaYfOohMXLE8NWeu3/93/8TZ3z6yvjJz34Vr918k5g8/tB4ezrvuxEgQIDA+hV4+pl56br7H+IH//FIDB/WHQd+5ANxxIF71jvV37V69dyVN9wcM794ayxesiQ+tOu7Y+KJfx2dnUPWbzHenQABAgT6BO65/6dxyCenxlev/XT80R9sUT/e37nbtboDhwABAu0p8N27H4xjTpseXV2dfTt46jH719fsqzt3r+46vj0rtVcECKwrAWGQdSXtfQgQIFCQwDVf/Hrclz5crgIfh+z/ob4wyNznXojdx50aF0w6JnZ4+9Zx8ee/FI//z+yYftZxMePqWekPhr+OC9NzTz41Jw7+xKfj6unj401/+LqC5JRKgACB9hP4xnfurc/R/zB9QoweNTxOOHNGvHPbreLYg/de7bn7oBPOjZ132CYOO2CP+M6dD9RBwFtvvCCGLveBRvtVa48IECCQv8D4KZ+LUaNGxBknHBhPPPV07H/M5Jgx5cR40x+9rt9r9bvuezjOPP/qmHnJ6bHhmFHpA+qLUiBkpxi3z675g6mQAAECg0Bg4cJFMe7YKfXnMNekc3UVBlndudu1+iBoql0kQKBIga998+647Y4fxEVnH79S/f2du1+cv6Df6/giERVNgMDvCAiDOCAIECBAYK0L/PTnv46t3rhlHH7yZ2K/vXbpC4N8/Vv3xL987Y74/GdOqd9zXgqH/NlHPhF33Xx5/NXhfxfnnHZ4bPcnb6yfO/+yG9MfHUfEsR/fZ63vnxckQIAAgYELPPTIL+sZQd7xtjfVg2Z+6dZ4+NHH6pmd/vJvTl/luftje/957H7AqXFnOr93dba+zfLRIybFhOPGpTDgWwb+5rYkQIAAgbUucPt376vP6b+38Qb1ax81/sLYfZcd69n5+rtWn5quzbfYdGzfDCLVbH7VLCHXXHzaWt8/L0iAAAECay5w2Rf+NXp6Ir5xx71x8eTj6zDI5IuuXeW5+8JJx7pWX3NiIwgQILBOBL74lW/Fgz/9ZUxJs6suf5s9Z26/5+7quf6u47u7h66T/fYmBAi0r4AwSPv2xp4RIEBg0AscdtL5vxMGueK6r8bsOc/GGWlK6WW3Kgxy7YwzYq+Dz4g7/nVGbLjBqPqp6sL33jS7yPmfOnrQOyiAAAECOQkcPWF67Pre7eulvLbb9bBVnrv3T98Unzx9Ztz0hXP6Sj9l8mdjp+23tgRYTgeDWggQGNQCS5f2xAM//nmcdNZlcf2lE+OW2+/q91p98kUzY/8U9PuL972rrvmXv348LUUwLb496+JBbWDnCRAgkIPAY//5RPzt310aX7xiUnz0yLP6wiCHnXz+Ks/d1eysrtVz6LwaCBDIUeCqf7wlbksztL6YllR/5tl58Z4dt4mJnzgoHvnFf/Z77n56zrx+r+Nf/7rNcmRSEwECayAgDLIGWDYlQIAAgTUTWDEMcvGVX67XGD/l6I/1vdBf7H9KWhrm2BiXpqe+9+ufT99I7K6fu+nr/z9uv+O+uPS8T6zZm9qaAAECBF41gcuvuSnu+9GjceUFp8aSpUvj7R84bJXn7gM+smtccuWs+Of0gfSy28SpV8Wb06xRB++726u2f16YAAECBAYmUM3Qt/Pex6elu7rizL89KD78wfdGf9fqM6acEOdcfF0cddBfxvvevV39Br954rexz6Fnxj1f+9zA3tBWBAgQIPCqCRyawnlH/c1esdM7to69Pj6xLwxy4HHnrPLcXc0c4lr9VWuHFyZAgEAjgdvSDE//8fAv4pCPfbCeabX6Ys0bttwsdtn5Hf2eu+c8M2+Vn7lX1/Fbv+n1jfbHYAIEBr+AMMjg76EKCBAg0LYCK4ZBPn/9V+PxJ2fHpJM/3rfPf7rnsfFPn5tUzwzyzS9Nj03Gblg/d/2s2+JH6cLXzCBt2147RoBAQQI9ac7pT//9DfGr/3qyXrd25IhhdfXVzCCrOneP+/Cucea0q+OW66b2KZ34qRnx3p22NTNIQceNUgkQaG+B6tz+y/Rt8pMmXRbHHLx3Osc/0e+1+pSLr42PfPB98aFdd6qLqr6ZWC0vY2aQ9u6xvSNAIH+B6os01ayq50w4rC52+TDI4ad8ZpXn7ovOPs61ev6HhgoJEMhEoPpCzpnTrorzTj+i33N3FQbp7zN3M4NkciAog0ADAWGQBniGEiBAgMDqBVYMg3wjTXF3w7/cFjMvOb0e+NTsZ9Jah+PjrpsvT1OZToqJJx4UO77jLfVzZ194TWz2+2Pj6PTtFjcCBAgQWL8C5192Yzz52zkxdeJR6VvknX07s/chE1d57v7Y3rvEB/Y7Ob73lUtj+LDWjE97HHRavebt9tu8ef0W490JECBQsEAVAJl1yx11qGPkiOG1RDXrU3Vd/qfvelu/1+rnX35jbLTB6DjukA/XY772zbvT63wnrp4+vmBNpRMgQGD9C5xw5oz44YOPRueQIfXOPDP3uRgzemScO+Hw+N4PHlzlufuCSce4Vl//rbMHBAgQWKXAL371mxgzamRsuslG9fN33/+TOPeS69Pn6af1e+7+7dNz+72OHzq0izQBAoULCIMUfgAonwABAq+mwIphkOdfmJ/CH6fGtDOPih22e0tMvfQf47kXXoxp6Y+LV1z31bj/oUdj+lnHx389/lRag3xqXP/3E+MP/2CLV3MXvTYBAgQIvIzADx74af3Bw5evOrueonT52+rO3dUa5e/cdqs44sA949Zv3xOXXDUr/u2GaSu9hgYQIECAwLoVGHfslHj39n8Sx6dgx9znnq9n+KiWidnr/+7c77V69YfG8VM+F9fOOCNGjRoRR55yQey31y7xV3u8b93uvHcjQIAAgdUKLD8zyOrO3a7VHUgECBBoT4Fq6caHH32sXvIr5bjjpLMui63SkrsnHbVf9HfuXrBgUb/X8e1Zpb0iQGBdCgiDrEtt70WAAIFCBD56xKT4+WP/HYsXL6m/ndIxpCMFPo6M3d6/Y9z1w4fTrB8z07cP58S7qkDIGUfGRhuOjkWLFsdZaTaQal3E6luKnzxy39h7t50LEVMmAQIE2lfg9POujJtv/350LhcE+eM3vDa+fOXZqz13V1OUTjj3ivjxI4/Flq/ZNM497fB461ZvaN9C7RkBAgQKEaiW/Jp80cx4OJ2fu7uH1tfoE44bl87zQ/q9Vq9oZn7p1rjqhptjUbrG32f399RjOjo6ClFTJgECBAaHwPJhkNWdu12rD45+2ksCBMoTmL9gYUy56Nr49p0P1F+m+fP3bB/jjx0XI4Z310vB9Pc5S3+fuZcnqGICBFYUEAZxTBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIEMhIQBsmomUohQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECAiDOAYIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAhkJCINk1EylECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgSEQRwDBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIGMBIRBMmqmUggQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECwiCOAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBARgLCIBk1UykECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAWEQxwABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAICMBYZCMmqkUAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgIAwiGOAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAMVBgykAAAkDSURBVAECBAgQIJCRgDBIRs1UCgECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIEBAGMQxQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBDISEAYJKNmKoUAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgIAziGCBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIZCQgDJJRM5VCgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIEBAGcQwQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBDISEAbJqJlKIUCAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgIgzgGCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIZCQiDZNRMpRAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIEhEEcAwQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgACBjASEQTJqplIIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAsIgjgECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAQEYCwiAZNVMpBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAFhEMcAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQCAjAWGQjJqpFAIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQICAMIhjgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECCQkYAwSEbNVAoBAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAQBjEMUCAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQyEhAGCSjZiqFAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQICAM4hggQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECGQkIAySUTOVQoAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAQBnEMECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQyEhAGyaiZSiFAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQICIM4BggQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECGQkIg2TUTKUQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBIRBHAMECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAgYwEhEEyaqZSCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQLCII4BAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgEBGAsIgGTVTKQQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABYRDHAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIEAgIwFhkIyaqRQCBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAgDCIY4AAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgkJGAMEhGzVQKAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQEAYxDFAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIEMhIQBgko2YqhQABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECAgDOIYIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAhkJCAMklEzlUKAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQEAZxDBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIEMhIQBsmomUohQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECAiDOAYIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAhkJCINk1EylECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgSEQRwDBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAIGMBIRBMmqmUggQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECwiCOAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIBARgLCIBk1UykECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAWEQxwABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAICMBYZCMmqkUAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgIAwiGOAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIJCRgDBIRs1UCgECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIEBAGMQxQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBDISEAYJKNmKoUAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgIAziGCBAgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIZCQgDJJRM5VCgAABAgQIECBAgAABAgQIECBAgAABAgQIECBAgAABAgQIEBAGcQwQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBDISEAbJqJlKIUCAAAECBAgQIECAAAECBAgQIECAAAECBAgQIECAAAECBAgIgzgGCBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIECBAgQIAAAQIZCfwviWCkEEOcApwAAAAASUVORK5CYII=" }, "metadata": {}, "output_type": "display_data" } ], "source": [ "filenames = [\"lut_input_sweep_K1x1.csv\", \"lut_input_sweep_K3x3.csv\", \"lut_input_sweep_K5x5.csv\"]\n", "fig = go.Figure()\n", "# deltas = calculate_deltas(list(split_df.get_group(120)['ms']))\n", "inputs_k1, inputs_k1_meas = load_2d_experiment(\"lut_input_sweep_K1x1.csv\")\n", "inputs_k3, inputs_k3_meas = load_2d_experiment(\"lut_input_sweep_K3x3.csv\")\n", "inputs_k5, inputs_k5_meas = load_2d_experiment(\"lut_input_sweep_K5x5.csv\") \n", "\n", "fig.add_trace(go.Scatter(x=inputs_k1, y=inputs_k1_meas, name=f\"Input Measurements K1\"))\n", "fig.add_trace(go.Scatter(x=inputs_k3, y=inputs_k3_meas, name=f\"Input Measurements K3\"))\n", "fig.add_trace(go.Scatter(x=inputs_k5, y=inputs_k5_meas, name=f\"Input Measurements K5\"))\n", "\n", "fig.update_layout(\n", " autosize=False,\n", "width=PLOT_WIDTH,\n", "height=PLOT_HEIGHT,\n", " # margin=dict(\n", " # l=50,\n", " # r=50,\n", " # b=100,\n", " # t=100,\n", " # pad=4\n", " # ),\n", " )\n", "fig.show()" ] }, { "cell_type": "code", "execution_count": null, "id": "e266a562cbc80021", "metadata": { "ExecuteTime": { "end_time": "2025-09-16T09:12:06.510213134Z", "start_time": "2025-09-03T06:31:13.092612Z" } }, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "id": "6d714069-fdc3-42a1-86ac-797f5c4a268f", "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "id": "5d10b8cf-ae00-447c-bc1f-b248e7c2a3f2", "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "id": "9af37da0-3655-4b4f-9cd3-98cae5120fcf", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.13.6" } }, "nbformat": 4, "nbformat_minor": 5 }